Вернуть иммунитет в рак

We use cookies. Read the Privacy and Cookie Policy

Другим примером молекулярного «выключателя», который раковые клетки используют в своих интересах, являются мембранные белки Т-лимфоцитов, получившие название «контрольные точки иммунитета» (не путать с контрольными точками клеточного цикла!).

Т-лимфоциты — главная группа клеток адаптивного (приобретенного) иммунитета позвоночных. Их «боевое подразделение» — цитотоксические Т-киллеры, обеспечивают распознавание и уничтожение клеток, несущих на поверхности чужеродные антигены, в том числе и опухолевых клеток. Однако «наивные», «необученные» Т-клетки изначально не способны распознать антиген непосредственно на поверхности опухоли. Прежде они должны «научиться» этому с помощью специальной группы клеток врожденного иммунитета, так называемых антигенпредставляющих клеток. Это дендритные клетки и макрофаги. В процессе первичного иммунного ответа они атакуют опухоль и пожирают отмершие раковые клетки, после чего начинают выставлять на своей поверхности не только собственные пептиды, но и пептиды переваренной опухолевой клетки, в том числе и опухолевый антиген (если повезет).

Чужеродный пептид на поверхности дендритной клетки (или макрофага) в составе МНС-комплекса взаимодействует с Т-клеточными рецепторами всех доступных Т-клеток, пока не найдет среди них самую подходящую — ту, у которой Т-рецептор сможет связать данный антиген наиболее эффективно.

Однако для полной активации Т-клеточного ответа недостаточно только наличия чужеродного антигена. Как в банке при заключении кредитного договора на большую сумму кроме паспорта просят предоставить дополнительные документы для гарантии платежеспособности, так и Т-клетке требуется «дополнительное подтверждение» в виде специальных активирующих молекул, которые тоже синтезируются дендритными клетками и макрофагами.

Самые известные молекулы-коактиваторы Т-клеточного ответа — белки В7. Эти мембранные белки связываются с рецептором CD28 на поверхности Т-клетки, на время как бы «склеивая» две клетки между собой. Такая дополнительная «молекулярная сшивка» — обязательное условие активации иммунного ответа. В ее отсутствие Т-лимфоцит не активируется.

Однако, как упоминалось выше, естественной частью иммунного ответа является его своевременное угнетение. Почти сразу после активации в Т-клетке запускаются процессы, ведущие к сдерживанию, ограничению их защитной, но одновременно и разрушительной деятельности. Активированные Т-лимфоциты начинают экспрессировать белок CTLA4. Это «близкий родственник» и одновременно конкурент рецептора CD28. CTLA4 взаимодействует с теми же молекулами-коактиваторами (В7), что и CD28, но делает это гораздо эффективнее, и в результате коактивация Т-клеток белками В7 ослабляется и иммунный ответ начинает затихать.

Действуя вместе с антигенраспознающими рецепторами TCR, CD28 активирует целый ряд внутриклеточных киназ (ферментов, которые фосфорилируют другие белки), в то время как сигнал от CTLA4 приводит к активации их «молекулярных антагонистов» — фосфатаз (ферментов, которые дефосфорилируют другие белки). Таким образом этот рецептор тормозит иммунный ответ не только на мембранном, но и на внутриклеточном уровне. Этот молекулярный «предохранитель» необычайно важен для ограничения развития патологически сильного иммунного ответа. Мыши, у которых ген белка CTLA4 был искусственно выключен, погибали от системной аутоиммунной реакции — они буквально убивали сами себя.

Другой контрольной точкой ингибирования Т-клеточного ответа выступает рецептор PD1. Так же как и CTLA4, PD1 не экспрессируется на поверхности «наивных» Т-клеток и начитает синтезироваться только после активации иммунного ответа.

В опухолях лиганды, запускающие ингибирование Т-клеточного ответа через этот рецептор, активно производятся не только раковыми клетками, но и другими присутствующими там иммунными клетками, например макрофагами и дендритными клетками, — еще один пример «перепрограммирования», когда клетки опухолевого окружения, которые, по идее, должны бороться со злокачественным перерождением, вместо этого начинают «работать на опухоль».

Изучение механизмов избегания иммунного ответа опухолями навело ученых на мысль разработать лекарства, регулирующие контрольные точки ингибирования в Т-клетках. Ученые предположили, что блокирование этих рецепторов потенциально может привести к восстановлению нормальной активности иммунных клеток и усилению их антиопухолевой активности. Первые статьи на эту тему появились еще в конце 1990-х годов. Но от научной идеи до выхода нового лекарства путь не близкий. Только в 2011 году Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США разрешило выпустить на рынок первый лекарственный препарат этой группы «Ипилимумаб» (блокирует CTLA4), и только в 2014 году одобрение получил препарат «Ниволумаб» (блокирует PD1). Оба этих лекарства представляют собой уже знакомые нам моноклональные антитела к соответствующим белкам. Пока они одобрены только для лечения меланомы, но ведутся клинические исследования возможного применения этого типа лекарств для лечения рака простаты, рака легких и почек. Каждый из препаратов показывает высокую эффективность при лечении метастатической меланомы, а совместное их применение еще и значительно усиливает фармацевтический эффект.

Теперь ученые с большим интересом присматриваются к другим ингибирующим рецепторам, блокировка которых потенциально способна усилить антиопухолевый ответ иммунной системы. В настоящее время перспективными объектами для иммунотерапии считаются ингибирующие рецепторы естественных киллеров (KIR), а также белки LAG3, TIM3, CD276. Можно надеяться, что в ближайшие годы появятся новые препараты «точечного» действия, которые закрепят успех этого типа иммунотерапии и подарят шанс на продление жизни множеству пациентов.

Альтернативным методом активации адаптивного иммунитета в опухоли является технология СAR (Chimeric antigen receptors), когда к собственным Т-лимфоцитам пациента «пришивается» искусственный химерный белок, способный эффективно распознавать опухолевый антиген. Она уже получила одобрение для лечения некоторых видов злокачественных заболеваний крови и показала высокую эффективность на поздних стадиях лейкозов и лимфом. Это очень дорогой (из-за того что клетки конструируются для каждого пациента индивидуально), но очень перспективный метод иммунотерапии.

Нобелевскую премию 2018 года разделили американский иммунолог Джеймс Эллисон, исследовавший свойства CTLA-4, и японский иммунолог Тасуку Хондзё, первооткрыватель белка PD-1. Многие ученые полагают, что авторы технологии СAR также имеют шанс получить эту престижнейшую научную награду в ближайшие годы.

 ФАКТ: двумя самыми современными методами активации антиракового иммунитета являются терапия, основанная на контрольных точках иммунитета, и технология СAR. Но пока они показали свою эффективность лишь для нескольких разновидностей рака.