Вопрос 26. Структура и функции митохондрий
1.
Характеристика и функции митохондрий
Митохондрии и пластиды представляют собой органеллы эукариотических клеток, сходные по своим функциям, морфологии и, вероятно, происхождению. Они обладают сильно развитой системой внутренних мембран, которая образуется из их оболочки и служит для интенсивного преобразования энергии.
Структура и функции митохондрий. Митохондрии снабжают клетку энергией , которую они накапливают в форме АТФ в результате окисления органических веществ (дыхание); они осуществляют окисление жирных кислот и аминокислот, цикл лимонной кислоты, реакции цепи дыхания и окислительное фосфорилирование. К побочным функциям митохондрий относится биосинтетические процессы, в частности, синтез аминокислот (глутаминовой кислоты, цитруллина) или стероидных гормонов, а также активное накопление ионов. В клетке имеется 150—1500 митохондрий у крупных простейших – до 500000. Они отсутствуют у ряда паразитических простейших, получающих энергию неокислительным путем с помощью брожения, и в некоторых специализированных клетках, в частности в зрелых эритроцитах млекопитающих. У прокариот окислительное высвобождение энергии происходит в плазматической мембране и ее выпячиваниях, или тилакоидах.
2.
Форма митохондрий
Форма митохондрий в большинстве случаев округлая или палочковидная, реже – нитевидная. Оболочка митохондрий состоит из двух мембран толщиной чаще всего 7—10 нм. Между ними находится перимитохондриальное пространство, а внутри митохондрии располагается матрикс. Внутренняя мембрана образует многочисленные выпячивания; в большинстве случаев это листовидные кристы, у многих простейших и в некоторых клетках млекопитающих (например, в клетках, продуцирующих стероидные гормоны) – трубочки (тубулы), а у растений – часто кармановидные мешочки, которые, однако, могут быть артефактом, возникшим при фиксации крист.
3.
Наружная мембрана
Наружная мембрана (как и другие мембраны эукариотических клеток), в отличие от внутренней мембраны, содержит значительное количество холестерола, а из фосфолипидов – фосфатидиэтаноламин, много лецитина и фосфатидилинозитол, но не содержит кардиолипина. Наружная мембрана проницаема для неорганических ионов и относительно крупных молекул (с молекулярной массой менее 10000), в частности, аминокислот, АТФ, сахарозы, промежуточных продуктов дыхания. Столь высокую проницаемость можно объяснить наличием туннельных белков с широкими порами. В наружной мембране находятся ферменты обмена фосфолипидов и активации жирных кислот, а также моноаминоксидаза.
4.
Внутренняя мембрана
Внутренняя мембрана с кристами очень богата белком. Она содержит очень мало холестерола; из фосфолипидов здесь имеются фосфатидиэтаноламин, большие количества лецитина и кардиолипин, но почти нет фосфатидилинозитола. Таким образом, эта мембрана по своему составу сходна с бактериальной мембраной. Кардиолипин встречается только у прокариот – в митохондриях и пластидах.
Проницаемость внутренней мембраны очень мала, через нее могут диффундировать только небольшие молекулы (с молекулярной массой менее 100). Поэтому в ней имеются транспортные белки для активного (осуществляемого с затратой энергии) транспорта таких веществ, как глюкоза, промежуточные продукты дыхания (пируват, метаболиты цикла лимонной кислоты), аминокислоты, АТФ и АДФ, фосфаты, Ca2+.
В качестве интегральных белков во внутренней мембране и кристах находятся комплексы ферментов, участвующих в транспорте электронов (дыхательная цепь). Периферические мембранные белки – различные дегидрогеназы – окисляют субстраты дыхания, находящиеся в матриксе, и передают отнятый водород в дыхательную цепь.
Со стороны матрикса на внутренней мембране и кристах с помощью электронного микроскопа можно видеть грибовидные мембранные АТФазы («элементарные частицы»).
Матрикс содержит промежуточные продукты обмена и некоторые ферменты цикла лимонной кислоты и окисления жирных кислот. Остальные ферменты, участвующие в этих процессах, являются периферическими белками внутренней мембраны, так что эти процессы осуществляются вблизи мембраны. В центральной области матрикса происходит, например, карбоксилирование или декарбоксилирование пирувата в процессе дыхания; здесь протекает также большинство митохондриальных биосинтезов.