Тринадцать гор

We use cookies. Read the Privacy and Cookie Policy

Тринадцать гор

Любой недуг — музыкальная задачка, — говаривал Новалис, — а каждое лекарство — музыкальное решение.

У. Х. Оден

Революция в онкологических исследованиях выражена простой фразой: по сути своей рак — генетическое заболевание.

Берт Фогельштейн

Когда я начинал писать эту книгу летом 2004 года, меня часто спрашивали, а как я собираюсь ее закончить. Обычно я отмахивался или уходил от вопроса. «Сам не знаю, — уклончиво отвечал я. — Не уверен». По правде говоря, я был уверен, хотя мне не хватало мужества признаться в этом самому себе. Я не сомневался, что книга завершится смертью Карлы от рецидива болезни.

Я ошибся. В 2009 году, ровно через пять лет после того, как я изучил под микроскопом костный мозг Карлы и подтвердил ее первую ремиссию, я приехал к ее дому в Ипсвиче с букетом цветов. Стояло хмурое туманное утро, мутное небо грозило непролившимся дождем. Перед тем как выехать из больницы, я наскоро просмотрел первые записи о появлении Карлы в больнице в 2004 году и со стыдом вспомнил, что, делая эти записи, не верил, что пациентка перенесет хотя бы первый этап химиотерапии.

Карла справилась. Ее изматывающая личная война закончилась. При остром лейкозе пять лет без рецидива практически равносильны полному излечению. Я вручил Карле азалии. Она стояла, потеряв дар речи, ошеломленная величием одержанной победы. С головой погрузившись в работу, я два дня не мог найти времени уведомить свою пациентку, что биопсия костного мозга не выявила никаких признаков рака. Карла знала от медсестры, что результаты пришли, и мое промедление прогнало ее через все круги ада: за сутки Карла окончательно убедила себя в том, что лейкемия вернулась, а моя задержка знаменует поступь неизбежного рока.

Онкологи и их пациенты связаны крепчайшими узами. Победа Карлы стала и моей победой, пусть и не такой великой, как для нее. Карла налила себе стакан воды из-под крана и, полуприкрыв глаза, проигрывала на экранах памяти краткую автобиографию пяти лет своей жизни. Ее дети играли со скотч-терьером в соседней комнате, блаженно не ведая о знаковой дате в жизни матери. Все это было к лучшему. «Моя цель, — писала Сьюзен Зонтаг в заключении к своей книге „Болезнь как метафора“, — состоит в том, чтобы унять воображение, а не разжигать его». Такова же была цель и моего визита. Я хотел сказать Карле, что с ее болезнью покончено, хотел вернуть ее к нормальной жизни — разорвать узы, что связывали нас пять долгих лет.

Я поинтересовался, как ей удалось выжить в этом кошмаре. В то утро дорога от больницы до дома Карлы заняла у меня полтора часа сплошных пробок. Не представляю, как она справлялась в то первое тяжкое лето: добиралась до больницы, несколько часов ждала результатов анализов, а затем, выяснив, что результаты слишком плохие и химиотерапию сейчас делать нельзя, возвращалась домой, а назавтра снова ехала в больницу — и так день за днем…

«У меня не было выбора, — ответила Карла, бессознательно поворачиваясь к двери, за которой играли дети. — Друзья часто спрашивали, ощущаю ли я, что болезнь выбила меня из нормальной жизни. Я отвечала им одно и то же: для того, кто болен, новая нормальная жизнь как раз и состоит из болезни».

До 2003 года ученые знали, что принципиальное отличие нормальности обычной клетки и ненормальности раковой состоит в накоплении генетических мутаций — ras, myc, Rb, neu и так далее, — которые запускают ключевые особенности поведения раковых клеток. Такое описание рака было неполным и поднимало неизбежный вопрос: сколько таких мутаций насчитывается при настоящем раке? Да, было выделено несколько онкогенов и генов-супрессоров опухолей, но каково общее число таких мутированных генов в каком-нибудь из настоящих человеческих раков?

Проект по расшифровке генома человека, то есть по выявлению полной последовательности нормального человеческого генома, завершился в 2003 году. По его следам идет другой проект, гораздо менее рекламируемый, но несравненно более сложный: установление полной последовательности геномов нескольких раковых клеток. Эта программа, получившая название «Проект по расшифровке генома рака», во много раз превосходит проект расшифровки генома нормальной клетки. В ней задействованы десятки ученых из разных уголков мира. Изначальный список раков, последовательность которых хотят установить, включает в себя рак мозга, легких, поджелудочной железы и яичников. Затем можно будет сравнить эти аномальные раковые последовательности с последовательностью нормального человеческого генома.

Целью проекта является составление «колоссального атласа» рака — собрание всех до единого генов, мутируемых в самых распространенных типах раков. «Применительно к пятидесяти самым распространенным видам рака, — утверждает Фрэнсис Коллинс, руководитель проекта, — эта программа превысит десять тысяч проектов по расшифровке генома человека, если считать по объему ДНК, который придется секвенировать. Поэтому мечту следует соразмерять с амбициозной, но реалистической оценкой открывающихся перед наукой возможностей для более хитроумного подхода к войне с этими болезнями». Единственная метафора, которой можно описать этот проект, относится к области геологии. Вместо того чтобы постигать рак ген за геном, атлас генома рака расчертит карту всей его территории: при определении последовательности ДНК нескольких типов рака будут выявлены все мутации до единой. Это ознаменует начало составления той «карты», что предсказала Мэгги Дженкс в своем последнем эссе.

В попытках определить последовательность ДНК в геноме раковых клеток лидируют две группы исследователей. Одна, так называемое объединение «Атлас генома рака», состоит из исследовательских групп в лабораториях нескольких стран. Вторая — группа Берта Фогельштейна в Университете Джонса Хопкинса, где создано свое отделение для определения генома раковой клетки, — существует на средства частного фонда и стремится определить последовательности ДНК геномов опухолей молочной железы, толстой кишки и поджелудочной железы. В 2006 году группа Фогельштейна поставила первую веху на этом пути, проанализировав по тринадцать тысяч генов в одиннадцати типах рака молочной железы и толстой кишки. Хотя в геном человека входит примерно двадцать тысяч генов, изначально оборудование группы Фогельштейна позволяло смотреть не более тринадцати тысяч генов. В 2008 году и группа Фогельштейна, и объединение «Атлас генома рака» расширили программу, секвенировав сотни генов из нескольких дюжин образцов опухолей мозга. В 2009 году определены последовательности геномов рака яичников, поджелудочной железы и легких, а также меланомы и нескольких видов лейкемии, а также выявлен полный каталог мутаций по каждому из этих типов рака.

Должно быть, никто не изучал геном раковой клетки так тщательно и страстно, как Берт Фогельштейн. Насмешливый, энергичный и непочтительный ученый в джинсах и поношенном пиджаке, выступая в переполненном конференц-зале Массачусетской клинической больницы, начал лекцию о геноме раковой клетки с попытки уложить все неимоверное множество сделанных его группой открытий в несколько слайдов. Задача, стоявшая перед ним, напоминала извечную проблему художника-пейзажиста: как передать целостность пейзажа несколькими взмахами кисти? Как на картине выразить самую суть изображенного места?

Ответ Фогельштейна на этот вопрос заимствует красоту приема, давно знакомого пейзажистам: негативное пространство передает простор, а позитивное — детали. Фогельштейн представил геномный пейзаж как панораму, изобразив весь геном человека в виде нити, зигзагом идущей по квадратному листу бумаги. Наука продолжает обращаться в прошлое: тут снова звучит древнее греческое значение слова mitosis — нити. На диаграмме Фогельштейна первый ген первой хромосомы генома человека занимает верхний левый угол листка, второй ген идет под ним — и так далее, вплоть до последнего гена двадцать третьей хромосомы, расположенного в нижнем правом углу страницы. Нормальный, немутированный геном человека во всей его полноте задает «фон», на котором поднимается рак.

На этом-то фоне Фогельштейн разместил сами мутации. Всякий раз, как в геноме того или иного рака наблюдалась мутация по тому или иному гену, Фогельштейн отмечал ее точкой на схеме. По мере того как частота мутаций какого-то конкретного гена росла, эти точки накапливались, вздымаясь сначала небольшими холмиками, а потом и горными пиками: чем чаще встречается мутация, тем выше гора.

В таком виде геном раковой клетки представляет унылую картину. Хромосомы испещрены мутациями: в отдельных образцах рака молочной железы или толстой кишки мутировано от пятидесяти до восьмидесяти генов; в раке поджелудочной железы — от пятидесяти до шестидесяти. Даже в опухолях мозга, которые часто развиваются в раннем возрасте, а потому по идее должны бы накапливать меньше мутаций, их насчитывается от сорока до пятидесяти.

Лишь несколько раков стали исключениями из общего правила и обладают относительно небольшим количеством мутаций. Один из них — давно известный острый лимфобластный лейкоз: лишь пять или десять генетических изменений омрачают собой девственно-чистый генетический пейзаж этой болезни[47]. Быть может, относительно скудное число отклонений при этом недуге объясняет, отчего он так легко поддается лечению цитотоксической химиотерапией. Ученые предполагают что генетически простые опухоли — то есть несущие немного мутаций — могут быть по природе более чувствительными к лекарствам, а оттого более излечимыми. Если так, то противоречие между успехом высокодозной терапии в лечении лейкемии и ее неудачами с другими видами рака имеет под собой глубокое биологическое объяснение. Поиски «универсального лекарства» от рака велись на опухоли, которая в генетическом смысле далека от универсальной модели.

По контрасту с лейкемией геномы более распространенных форм рака в генетическом отношении представляются полной неразберихой. На схеме Фогельштейна для этих раков громоздится множество мутаций. В одном из образцов раковых клеток молочной железы, взятых у сорокатрехлетней пациентки, было мутировано сто двадцать семь генов — практически одна мутация на каждые двести генов. Гетерогенность мутаций внутри одного и того же подвида рака просто устрашает. Если сравнить два образца рака молочной железы, взятых от разных больных, набор мутаций в них окажется отнюдь не одинаков. Как выразился по этому поводу сам Фогельштейн: «В конце концов определение последовательности геномов раковых клеток подтвердило опыт, накопленный столетиями клинических наблюдений. Рак каждого пациента уникален, поскольку уникален геном каждого отдельного рака. Физиологическая гетерогенность отражает гетерогенность генетическую». Нормальные клетки нормальны одинаково, а вот злокачественные клетки несчастны каждая на свой лад.

Там, где остальные видят устрашающий хаос замусоренного генетического пейзажа, Фогельштейн различает вырисовывающиеся из этого хаоса закономерности. Он считает, что мутации в раковом геноме встречаются в двух разных формах. Одни из них пассивны. По мере деления раковые клетки накапливают мутации, произошедшие из-за случайных ошибок при копировании ДНК, однако это никак не влияет на биологию рака. Мутации откладываются в геноме и пассивно передаются при последующих делениях — заметные, но не играющие никакой роли. Это посторонние, или пассажирские, мутации. («Просто катаются», — как сказал о них Фогельштейн).

Второй тип мутаций — отнюдь не пассивные игроки. В отличие от пассажирских мутаций эти измененные гены непосредственно определяют деление и биологическое поведение раковых клеток. Это мутации-«водители», играющие решающую роль в биологии раковой клетки.

Каждая раковая клетка обладает своим набором мутаций-пассажиров и мутаций-водителей. К примеру, у женщины со ста двадцатью семью мутациями раковых клеток молочной железы скорее всего лишь десяток мутаций влияет на непосредственный рост и выживание опухоли, а остальные приобретены в результате ошибок копирования при стремительном делении клеток. Эти два типа мутаций функционально не схожи между собой, тем не менее отличить один тип от другого не так-то просто. Сейчас ученые в состоянии определять некоторые ведущие гены, непосредственно активирующие опухолевый рост. Поскольку пассажирские мутации происходят случайным образом, то они таким же случайным образом раскиданы по всему геному. Мутации-водители целенаправленно бьют по ключевым онкогенам и генам-супрессорам опухолей, а в геном входит лишь ограниченное количество таких генов. Эти мутации — как ras, myc и Rb — повторяются от образца к образцу. На карте Фогельштейна они выделяются высокими пиками, а пассажирские мутации, как правило, населяют долины. Однако в тех случаях, когда мутация происходит в еще неизвестном гене, невозможно предсказать, значимая она или же незначимая — водитель или пассажир, балласт или мотор.

«Горы», вырисовывающиеся в раковом геноме — то есть наиболее часто мутирующие при конкретной форме рака гены, — обладают и еще одним свойством. Их можно организовать в ключевые сигнальные пути рака. В недавней серии исследований группа Фогельштейна при Университете Джонса Хопкинса провела повторный анализ мутаций ракового генома при помощи другой стратегии. Вместо того чтобы делать упор на количестве отдельных мутаций, они подсчитали количество мутировавших в раковых клетках сигнальных путей. Каждый раз, как встречалась мутация по какому-либо из генов, задействованных в сигнальном пути Ras-Mek-Erk, ее засчитывали как мутацию сигнального пути Ras. Точно так же, если клетка содержала мутацию по какому-либо из компонентов сигнального пути Rb, ее классифицировали как мутанта по сигнальному пути Rb, и так далее до тех пор, пока все мутации-водители не оказались выстроены по сигнальным путям.

Сколько же сигнальных путей обычно разлажено в раковой клетке? Фогельштейн обнаружил, что, как правило, их от одиннадцати до пятнадцати, в среднем — тринадцать. Мутационная сложность уровня «ген-за-геном» продолжает поражать — любая отдельно взятая опухоль содержит множество мутаций, раскиданных по всему геному. Однако каждый тип опухолей содержит одни и те же нарушенные сигнальные пути, даже если конкретные гены, ответственные за нарушение этого пути, отличаются от случая к случаю. У одного пациента с раком мочевого пузыря может быть активирован Ras, у второго — Mek, а у третьего — Erk, но во всех трех случаях выведен из строя какой-либо из ключевых компонентов каскада Ras-Mek-Erk.

Неразбериха, царящая в геноме раковой клетки, обманчива. При ближайшем рассмотрении в ней выявляются организующие принципы. Язык рака грамматически строен, методичен и даже — не решаюсь написать — прекрасен. Гены разговаривают с генами, а сигнальные пути с сигнальными путями на совершенном наречии, звучащем знакомой и все же чужеродной мелодией, что набирает темп, достигая смертельного накала. Под прикрытием внешнего хаоса и предельного разнообразия кроется глубокое генетическое единство. Заболевания, внешне совершенно не схожие друг с другом, часто обусловлены нарушениями одних и тех же или схожих сигнальных путей. Как сказал недавно один ученый: «Рак — это болезнь сигнальных путей».

Все это — либо очень хорошие новости, либо очень дурные. Пессимисты взирают на зловещее число «тринадцать» и падают духом. Нарушение одиннадцати — пятнадцати ключевых сигнальных путей представляет огромную сложность для врачей-онкологов. Понадобятся ли для «нормализации» раковой клетки тринадцать отдельных лекарств, направленных на тринадцать независимых сигнальных путей? А учитывая гибкость и переменчивость раковых клеток, то понадобятся ли еще тринадцать дополнительных лекарств на тот момент, когда клетка приобретет устойчивость к сочетанию первых тринадцати?

Оптимисты же, напротив, возражают, мол, тринадцать — это конечное число, и это не может не радовать. Прежде чем Фогельштейн выявил ключевые сигнальные пути, мутационная сложность рака казалась поистине безграничной. Фактически же иерархическая организация генов в сигнальные пути, характерные для каждого определенного типа опухолей, наводит на мысли о существовании еще более глубинной иерархии. Возможно, для победы над сложным раком вроде рака молочной или поджелудочной железы не нужно атаковать все тринадцать сигнальных путей сразу. Возможно, какие-то из них будут поддаваться лечению лучше других. Отличным примером такого варианта стал случай Барбары Брэдфилд, опухоль которой была настолько зависима от Her-2, что направленной атаки именно на этот онкоген хватило для достижения стойкой ремиссии, растянувшейся не на одно десятилетие.

Биология рака приоткрывается нам ген за геном, сигнальный путь за сигнальным путем. Сложная карта мутаций во многих типах опухолей с ее долинами, взгорьями и вершинами скоро будет дорисована окончательно, позволяя полностью определить все ключевые сигнальные пути. Однако, как гласит старинная поговорка, за горами открываются новые горы. После определения мутаций надо будет привязать каждый мутантный ген к той или иной функции клеточной физиологии. Исследователям придется освоить новый цикл знаний, повторяющий предыдущий на ином уровне: от анатомии — к физиологии, от физиологии — к методам терапии. Последовательность генома раковой клетки представляет собой генетическую анатомию рака. Точно так же, как Вирхов в девятнадцатом веке совершил важнейший скачок от анатомии Везалия к физиологии рака, современная наука должна перейти от молекулярной анатомии к молекулярной физиологии рака. Скоро мы будем знать, какие именно гены мутируют при раке. Главная проблема — понять, что они делают.

Знаковый переход от описательной биологии к функциональной биологии рака создаст три новых направления в онкологической медицине.

Первое направление — терапевтическое. После того как будут выявлены главнейшие мутации-водители каждого отдельного вида рака, необходимо начать поиски целевых терапий против деятельности конкретно этих генов. Это не фантастическая утопия — целевые ингибиторы некоторых из тринадцати ключевых сигнальных путей уже вошли в медицину. Иные из них, взятые сами по себе, как отдельное лекарство, пока еще дают весьма скромные результаты в лечении. Основная задача теперь состоит в том, чтобы подобрать сочетания подобных лекарств, которые способны блокировать раковые клетки, не убивая при этом здоровые.

В статье, опубликованной в «Нью-Йорк таймс» летом 2009 года, Джеймс Уотсон, один из открывателей структуры ДНК, продемонстрировал примечательный поворот во взглядах. Выступая перед конгрессом в 1969 году, Уотсон охарактеризовал войну с раком как затею преждевременную и бесполезную. Однако сорок лет спустя он был настроен уже не так критически. «Скоро мы будем знать все генетические нарушения, определяющие основные виды убивающих нас раковых заболеваний. Нам уже известно большинство сигнальных путей, по которым запускающие рак сигналы передаются в клетке. Около двадцати лекарств, блокирующих эти сигнальные пути, сейчас проходят клинические испытания после того, как была доказана их способность останавливать рак у мышей. Такие препараты, как герцептин и тарцева, получив одобрение Управления по контролю качества пищевой продукции и лекарственных средств, применяются повсеместно».

Второе новое направление — профилактика рака. На сегодняшний день она основывается на двух отдельных и противоположных подходах к выявлению потенциальных канцерогенов, действие которых можно предотвратить. Один подход — это интенсивные широкомасштабные исследования на людях, помогающие проследить связь между конкретной формой рака и фактором риска. Так, исследование Долла с Хиллом выявило, что курение является фактором риска для рака легких. Второй подход состоит в лабораторных исследованиях, выявляющих канцерогены по их способности вызывать мутации в бактериях или провоцировать раковые и предраковые состояния у людей и животных. Таковы были эксперименты Брюса Эймса по поиску химических мутагенов или опыты Маршалла и Уоррена, определившие, что причиной рака желудка является Н. pylori.

Однако и та, и другая стратегии все равно упускают часть потенциально предотвратимых канцерогенов. Для выявления слабых факторов риска требуются огромнейшие популяционные исследования, и чем слабее эффект, тем больше должна быть исследуемая популяция. Такие масштабные, дорогостоящие, не слишком достоверные и методически сложные исследования проводить крайне трудно. Многие важные факторы, провоцирующие рак, сложно выявить лабораторными экспериментами: к примеру, как обнаружил Эвартс Грэхем, табачный дым, самый распространенный человеческий онкоген, с трудом вызывает рак легких у мышей; бактериальный тест Брюса Эймса не выявил мутагенности асбеста[48].

Два противоречия недавних времен особенно ярко подчеркнули эти слепые пятна эпидемиологии. В 2000 году проведенное в Великобритании «исследование миллиона женщин» определило, что эстроген и прогестерон, выписываемые при гормональной терапии для облегчения менопаузы, являются главными факторами риска для эстроген-положительного рака молочной железы. В научном отношении это обескураживающий вывод. Тест Брюса Эймса не показал мутагенности эстрогена, в низких дозах не провоцирующего рака у животных, однако с 1960-х годов было известно, что оба этих гормона способны патологически активировать эстроген-положительный рак молочной железы. Хирургия и лечение тамоксифеном помогают добиться ремиссии рака, блокировав действие эстрогена. Вполне логично заключить, что внешний эстроген способен вызывать рак молочной железы. Комплексный подход к профилактике рака, включающий в себя последние сведения науки, мог бы предсказать такой результат, тем самым избавив ученых от необходимости проводить исследования на миллионной группе, а также спас бы жизни тысячам женщин.

Второе противоречие тоже стало наследием 1960-х годов. Со времен выхода в 1962 году книги Рэйчел Карсон «Безмолвная весна» защитники окружающей среды утверждали, что в подъеме уровня рака в США — помимо всех прочих факторов — виновно повсеместное применение пестицидов. Эта теория десятки лет вызывала бурные споры, акции протеста и общественные кампании. Она выглядит правдоподобной, однако масштабные человеческие исследования, которые подтвердили бы канцерогенность определенных пестицидов, шли вяло, а исследования на животных оказались неинформативны. Было показано, что высокие дозы ДДТ и аминотриазола провоцируют рак у животных, но тысячи других химикатов остались необследованными. Тут опять-таки требуется комплексный подход. Выявление ключевых активированных сигнальных путей в раковых клетках способно обеспечить более чуткий метод определения канцерогенов в исследованиях на животных — даже если какой-либо препарат в таких исследованиях не будет вызывать рака, но будет активировать связанные с раком гены и сигнальные пути, то это станет свидетельством его потенциальной канцерогенности. Кроме того, известно, что существует связь между питанием и риском определенных типов рака, но эта область исследований еще не вышла из младенчества. Диеты, богатые красным мясом и бедные клетчаткой, увеличивают риск рака толстой кишки, а ожирение связано с раком молочной железы, однако подробнее об этих зависимостях пока ничего не известно, особенно на молекулярном уровне.

В 2005 году гарвардский эпидемиолог Дэвид Хантер утверждал, что совмещение традиционной эпидемиологии, молекулярной биологии и онкогенетики воскресит эпидемиологию и многократно увеличит ее способность предотвращать рак. «Традиционная эпидемиология, — писал он, — озабочена корреляцией подверженности тому или иному воздействию и последующим возникновением рака, а все, что находится в промежутке между ними, считается „черным ящиком“… В молекулярной биологии эпидемиолог откроет этот „черный ящик“, исследуя, что же происходит между воздействием фактора и началом или прогрессом болезни».

Понимание молекулярных основ рака вольет новые силы не только в профилактику рака, но и в его раннее выявление. Собственно, это уже и произошло. Выявление значимости генов BRCA при раке молочной железы воплощает интеграцию скринирования рака и онкогенетики. В середине 1990-х годов, опираясь на достижения последнего десятилетия, исследователи выделили два родственных гена, BRCA-1 и BRCA-2, значительно увеличивающих риск развития рака молочной железы. Женщина с врожденной мутацией гена BRCA-1 имеет от пятидесяти до восьмидесяти процентов риска возникновения у нее рака молочной железы, что в три — пять раз выше обычного риска. Вдобавок этот ген увеличивает риск заболеть раком яичников. В настоящее время тестирование на эту мутацию прочно вошло в систему профилактики рака. Женщины, у которых она обнаруживается в обоих генах, проходят более частый и более тщательный осмотр при помощи чувствительных современных методик, например, магнитно-резонансной томографии молочной железы. Кроме того, женщины, несущие эту мутацию, могут начать заранее принимать тамоксифен для предотвращения рака — эта стратегия доказала свою эффективность в клинических испытаниях. Иногда такие женщины выбирают еще более радикальный метод и профилактически удаляют молочные железы и яичники, что резко понижает риск возникновения рака. Одна израильтянка, обладательница этой мутации, выбравшая радикальную хирургию после того, как у нее обнаружился рак в одной из молочных желез, сказала мне, что для нее этот путь стал отчасти символическим: «Я отвергаю рак, изгоняю его из тела. Моя грудь стала для меня не более чем вместилищем рака. Такая она мне больше не нужна. Она вредит моему организму, моему шансу выжить. Я отправилась к хирургу и попросила мне все удалить».

Третье и, пожалуй, самое комплексное новое направление медицинской онкологии состоит в том, чтобы собрать воедино наше понимание мутантных генов и нарушенных сигнальных путей для объяснения поведения рака в целом, то есть для очередного цикла «знание — открытие — терапевтическое вмешательство».

Самый непостижимый пример поведения раковой клетки, не объясняемый активацией лишь одного онкогена или сигнального пути, — ее бессмертность. Высокую скорость деления, невосприимчивость к сигналам остановки роста, опухолевый ангиогенезис можно объяснить аномальной активацией или инактивацией в раковых клетках таких сигнальных путей, как ras, myc или Rb. Однако ученые не могут объяснить, почему раковые клетки продолжают делиться до бесконечности. Большинство нормальных клеток, даже стремительно размножающихся, делятся лишь несколько поколений, а затем истощают свою пролиферативную способность. Что же позволяет раковой клетке делиться, не зная усталости, поколение за поколением?

Немедленно напрашивающийся, хотя очень противоречивый ответ на этот вопрос о бессмертии рака позаимствован из нормальной физиологии. В человеческом эмбрионе, как и в некоторых органах взрослого человека, содержится крохотная популяция стволовых клеток, способных к бессмертной регенерации. Стволовые клетки — это потенциал организма к обновлению. Например, всю целостность крови человека можно воссоздать на основании лишь одной стволовой клетки крови (ее называют гемопоэтической или кроветворной), в обычных условиях обитающей в костном мозге. В нормальных условиях активна лишь небольшая часть популяции стволовых клеток крови, остальные же погружены в состояние покоя — спят. Однако если количество клеток крови внезапно резко падает в результате ранения или химиотерапии, стволовые клетки просыпаются и начинают делиться с поражающей воображение плодовитостью, производя клетки, которые, в свою очередь, порождают многие тысячи клеток крови. За неделю одна-единственная стволовая клетка способна снабдить новым запасом крови весь организм — а потом, подчиняясь какому-то неизвестному науке механизму, снова погружается в сон.

Отдельные ученые считают, что нечто подобное безостановочно происходит и при раке — по крайней мере при лейкемии. В середине 1990-х годов Джон Дик, канадский биолог из Торонто, сформулировал, что при лейкемии у человека небольшая популяция клеток обладает бесконечной способностью к самовоспроизведению. Эти «раковые стволовые клетки» действуют как постоянный резервуар рака, бесконечно производя злокачественные клетки. Химиотерапия убивает основную массу раковых клеток, однако эта небольшая популяция стволовых клеток оказывается несравненно более устойчивой к лекарствам, выживает и продолжает делиться, что и обуславливает рецидив через некоторое время после химиотерапии. И в самом деле, раковая стволовая клетка обретает поведение нормальной стволовой клетки за счет активации тех же генов и сигнальных путей, что дают бессмертность нормальной стволовой клетке — вот только в отличие от нормальных раковые клетки не погружаются в состояние покоя. Таким образом, рак в буквальном смысле слова пытается превратиться в регенерирующий орган — или, что звучит еще более пугающе, в регенерирующий организм. Это стремление к бессмертию отражает наше собственное стремление, заложенное и в зародыше, и в механизме обновления наших органов. Если рак преуспеет, то в один прекрасный день из него получится куда более совершенный организм, чем у его хозяина, — наделенный как бессмертием, так и способностью к неограниченному делению. Тут уместно вспомнить, что лейкемические клетки, которые растут у меня в лаборатории, взяты у женщины, умершей тридцать лет тому назад. Они уже достигли пресловутого «совершенства».

Способность раковой клетки постоянно подражать нормальной физиологии, нарушать и искажать ее наводит на зловещий вопрос: что такое «нормальность»? «Рак, — сказала Карла, — и есть моя новая нормальная жизнь». Вполне возможно, что для нас рак стал нормальной жизнью и мы от природы обречены рано или поздно погибнуть от злокачественного заболевания. По мере того как в отдельных странах доля больных раком постепенно ползет от одной четверти к одной трети и даже к половине населения, рак, похоже, становится нашей новой нормой — нашей неизбежностью. Вопрос скоро будет не в том, столкнемся ли мы с этой бессмертной болезнью, а когда именно мы с ней столкнемся.