Легкие

We use cookies. Read the Privacy and Cookie Policy

Легкие

Легкие по форме напоминают конус с закругленной верхушкой, выступающей над первым ребром. На средостенной поверхности каждого легкого расположены ворота легкого, через которые проходят бронх, сосуды и нервы, окруженные соединительной тканью, образующие корень легкого. Каждое легкое разделяется глубокими щелями на доли: правое на три, левое на две. Доли легких – это обособленные анатомически и физиологически участки легкого с вентилирующим их бронхом и собственной сосудисто-нервной системой. Консистенция легкого мягкая, упругая, напоминает губку; благодаря содержащемуся воздуху легкие и их кусочки плавают в воде.

Цвет легких у детей, особенно раннего возраста, бледно-розовый, у взрослых ткань постепенно темнеет, появляются черные пятна ближе к поверхности за счет частиц угля, которые откладываются в соединительной ткани легкого. Каждому сегментарному бронху соответствует бронхолегочный сегмент. Сегмент – участок легочной ткани, имеющий свою сосудисто-нервную систему и вентилируемый сегментарным бронхом. Сегменты образованы легочными дольками, число которых в одном сегменте достигает примерно 80. Они разделены междольковыми соединительнотканными перегородками. Долька представляет собой участок легочной ткани, вентилируемый претерминальной (дольковой) бронхиолой, сопровождаемой конечными ветвлениями легочных артериол и венул, лимфатических сосудов и нервов. В верхушку каждой дольки входит претерминальная дольковая бронхиола, которая разветвляется на мельчайшие 3–7 концевых (терминальных) бронхиол диаметром около 0,5–0,15 мм.

Функциональной единицей легкого является ацинус (рис. 46). Это система разветвлений одной концевой брохниолы, делящейся на 14–16 дыхательных (распираторных) бронхиол I порядка, которые дихотомически делятся на распираторные бронхиолы II порядка. Последние, в свою очередь, также дихотомически разветвляются на распираторные бронхиолы III порядка, образующие 2–3 генерации альвеолярных ходов (до 1500), несущих на себе до 20 000 альвеолярных мешочков и альвеол. В одной легочной дольке насчитывается около 50 ацинусов.

Стенки терминальных и дыхательных бронхиол окружены густой сетью эластичных волокон. Между спиральными пучками эластических волокон имеются пучки гладких миоцитов. Благодаря этому при вдохе бронхиолы не спадаются. Уже на стенках дыхательных бронхиол имеются бухтообразные выпячивания – альвеолы. Альвеолярные ходы имеют диаметр около 100 мкм. Вход в каждую альвеолу альвеолярного хода окружен пучками гладких миоцитов, которые образуют шаровидные выпячивания.

Рис. 46. Бронхиальное дерево, схемы. А – ветвление бронхов в правом и левом легких. 1, 2 – главные бронхи; 3, 4 – долевые и сегментарные бронхи; 5–15 – ветви сегментарных бронхов, дольковый бронх и его разветвления (не показаны); 16 – конечная бронхиола; 17–19 – дыхательные бронхиолы (три порядка ветвлений); 20–22 – альвеолярные ходы (три порядка ветвлений); 23 – альвеолярные мешочки. Б – строение ацинуса легкого. 1 – терминальная бронхиола; 2 – дыхательная бронхиола первого порядка; 3 – дыхательные бронхиолы второго порядка; 4 – дыхательные бронхиолы третьего порядка; 5 – альвеолярные ходы; 6 – альвеолярные мешочки; 7 – альвеолы

ВНИМАНИЕ

У человека на один альвеолярный ход приходится в среднем 21 альвеола. Альвеолы, альвеолярные мешочки и ходы являются не морфологическими структурами, а пространствами, содержащими воздух.

Альвеолы напоминают пузырьки неправильной формы, они разделяются межальвеолярными перегородками толщиной 2–8 мкм. В каждой перегородке, обычно являющейся одновременно стенкой двух (иногда и более) альвеол, расположена густая сеть кровеносных капилляров, эластических, ретикулярных и коллагеновых волокон и клеток соединительной ткани. Форма альвеол многоугольная, вход в альвеолу округлый. Количество альвеол в обоих легких человека 600–700 млн, а общая их поверхность колеблется в пределах от 40 м2 при выдохе – до 120 м2 при вдохе. Диаметр альвеол новорожденного в среднем равен 150 мкм, взрослого – 280 мкм, после 70–75 лет объем альвеол увеличивается за счет исчезновения некоторых межальвеолярных перегородок, их диаметр достигает 300–350 мкм. Альвеолы выстланы изнутри клетками двух типов: альвеолярными клетками I типа, альвеолярными клетками II типа (рис. 47). Преобладают клетки I типа, которые выстилают около 87,5 % поверхности альвеол. Это уплощенные клетки толщиной 0,1–0,2 мкм. Лишь в области залегания ядра, которое выбухает в просвет альвеолы, они утолщены. Такое строение в наибольшей степени способствует газообмену.

Альвеолярные клетки I типа крупные – округлые клетки с большим округлым ядром, выступающие в просвет альвеолы. В каждой клетке находится от 2 до 10 окруженных мембраной слоистых округлых осмиофильных пластинчатых телец, богатых фосфолипидами. Тельца, выделяющиеся из клеток посредством экзоцитоза, по современным воззрениям, вырабатывают основную часть сурфактанта, выстилающего изнутри альвеолы в виде пленки. Основная функция сурфактанта – поддержание поверхностного натяжения альвеолы, ее способности к раздуванию при вдохе и противодействие спадению при выдохе. Особенно важна роль сурфактанта при первом вдохе новорожденного ребенка. Сурфактант препятствует пропотеванию жидкости в просвет альвеол и обладает бактерицидностью. Альвеолярные клетки I типа являются также источником восстановления клеточной выстилки альвеол. В выстилке альвеол обнаруживается еще один вид клеток альвеолярные макрофагоциты. Они имеют моноцитарное происхождение, относятся к фагоцитарной системе, активно фагоцитируют частицы и сурфактант.

Рис. 47. Строение межальвеолярной перегородки. 1 – респираторный альвеолоцит; 2 – просвет кровеносного капилляра; 3 – эндотелиальная клетка; 4 – альвеолярный макрофаг; 5 – большой альвеолоцит; 6 – осмиофильные тельца; 7 – эластическое волокно; 8 – просвет альвеол

Воздушно-кровяной барьер (аэрогематический), через который происходит газообмен, очень тонок (в среднем 0,2–0,5 мкм). Он образован тонкой цитоплазмой альвеолярные клеток I типа и базальной мембраной, на которой они лежат, сливающейся с базальной мембраной кровеносных капилляров (толщина общей мембраны 90–100 нм) и цитоплазмой эндотелиальных клеток, образующих стенку капилляра.

Каждый капилляр граничит с одной или несколькими альвеолами. Кислород в процессе диффузии проходит из просвета альвеолы в кровеносные капилляры через аэрогематический барьер, плазму крови и мембрану эритроцита, СО2 диффундирует в обратном направлении. Диффузия осуществляется благодаря градиенту парциальных давлений О2 и СО2 в альвеолярном воздухе и в крови. Сразу после диффузии в эритроциты О2 связывается с гемоглобином, в результате чего образуется НвО2, который диффундирует к центру эритроцита. Один грамм гемоглобина связывает 1,34 мл О2. СО2 в эритроцитах связан с гемоглобином. Углекислый газ диффундирует из эритроцитов только после его освобождения из химической связи с гемоглобином. Во время прохождения через легочные капилляры эритроциты захватывают кислород, и в них увеличивается напряжение О2, в то же время напряжение О2 в крови снижается.

Данный текст является ознакомительным фрагментом.