Враг внутри нас

Враг внутри нас

Если генетическая программа старения существует, то как же она может быть устроена? Самый первый ответ на этот вопрос пришел от червячков-нематод Caenorhabditis elegans. В 60-е годы прошлого века этим мелким, всего в 1 мм длиной, червячкам выпало счастье попасться на глаза будущему нобелевскому лауреату Синдею Бреннеру, который счел их идеальными лабораторными животными. Червячки оказались неприхотливы в плане содержания и питания; тела их были прозрачны, и можно было легко наблюдать все нюансы их жизни на уровне отдельных клеток. Кро-

ме того, эти червячки быстро развивались, быстро размножались и быстро старели: вся жизнь их укладывалась в 20 дней.

Благодаря этим важным для исследователей свойствам червячки стремительно покорили мир экспериментальной биологии, в том числе и в области изучения старения. Вскоре было обнаружено, что повреждение гена аде-1 у этих нематод приводило к резкому (почти в два раза!) увеличению продолжительности жизни. При этом никаких серьезных побочных эффектов, вроде неспособности к размножению или пониженной сопротивляемости организма, не наблюдалось. Даже наоборот, червячки-мутанты были активнее, подвижнее и жизнеспособнее своих диких сородичей.

То есть получается, что аде-1 — в чистом виде «ген старения», сокращающий жизнь своим носителям. Зачем он нужен обычным, не мутированным червячкам? Дальнейшие исследования показали, что продукт этого гена задействован в защитных реакциях на стресс. И выключение этого гена заставляло организм червячка всю жизнь функционировать в «форсированном режиме».

«Ну и в чем же проблема? — спросите вы. — Отчего бы не жить всю жизнь в состоянии повышенной мобилизации, если такая жизнь получается длиннее и насыщеннее?» В случае чер-вячков-мутантов оказалось, что дело в перерасходе энергии. При полном изобилии пищи и дикие, и мутантные червячки росли одинаково хорошо, но в условиях чередования голода и сытости дикие червячки размножались и выживали лучше, вытесняя мутантов из совместной культуры. Судя по всему, «форсированный режим» слишком энергозатратен и в дикой природе в условиях жесткой конкуренции себя не оправдывает.

Но черви-нематоды при всех своих чудесных свойствах мало похожи на людей. Как обстоят дела с генами старения у наших более близких родственников? Оказалось, что «гены старения» можно найти и у млекопитающих. В конце прошлого века ученые

заметили, что так называемые карликовые мыши — декоративная порода миниатюрных мышек, выведенных когда-то в Японии (по одной из версий — для того, чтобы кормить в неволе мелких змей), — живут заметно дольше своих сородичей обычного размера. Выяснилось, что причина долголетия карликовых мышей заключается в дефектах генов, отвечающих за выработку гормона роста. Однако, в отличие от шустрых червячков, мутантные мыши расплачивались за свое долголетие размерами тела и способностью к размножению.

Программа старения человека, если она

СУЩЕСТВУЕТ, МОГЛИ БЫ БЫТЬ ЗАКОДИРОВАНА В НЕСКОЛЬКИХ ГЕНАХ, КАЖДЫЙ ИЗ КОТОРЫХ, ПОМИМО ПОДЛОГО «САБОТАЖА»

С ЦЕЛЬЮ РАЗРУШЕНИЯ НАШЕГО ОРГАНИЗМА, НУЖЕН ЕЩЕ ДЛЯ КАКОЙ-ТО ЖИЗНЕННО ВАЖНОЙ ФУНКЦИИ.

Если говорить о человеке, то, к сожалению, вероятность наличия у нас таких единичных «генов старения» крайне мала. Если бы они существовали, то время от времени (примерно один раз на 5 миллионов человек) в них происходили бы случайные мутации, и тогда мы должны были бы наблюдать экстремальных долгожителей. Однако ничего подобного пока не наблюдалось, и распределение людей по продолжительности жизни достаточно ровное. Это означает, что программа старения — если она существует — закодирована в нескольких генах, каждый из которых, помимо подлого «саботажа» с целью разрушения нашего организма, нужен еще для какой-то жизненно важной функции.

1.6.1. Активные формы кислорода — причина старости?

Есть легенда, что французские роялисты, придя к власти на смену Наполеону, так неудачно сослали его на остров Эльбу, что решили не повторять своей ошибки и, вторично пленив своего самого страшного врага, не только отправили бывшего императора куда подальше — на остров Святой Елены, но еще и приказали тамошнему секретному агенту добавлять в пищу Наполеону немного мышьяка, чем постепенно свели его в могилу.

Если старение есть медленное самоубийство, то и в этом случае организм мог бы использовать какой-нибудь подходящий яд. Говорят, что смерть от употребления лекарств вышла на третье место (после сердечно-сосудистых заболеваний и рака) среди причин гибели людей в наступившем новом тысячелетии. Однако ясно, что люди начали стареть гораздо раньше, чем изобрели первое лекарство. Результаты остеопороза, типичного признака старения костей, были обнаружены в ископаемых скелетах самых древних Homo sapiens.

Ясно, что мы стареем не из-за мышьяка, который неудобен уже тем, что организм сам его не производит. В то же время есть ядовитые соединения, образуемые в ходе нормального обмена веществ в организме. Это так называемые активные формы кислорода (АФК), которые возникают в клетках нашего тела в процессе дыхания.

Дыхание для человека — синоним жизни. Пока я дышу, пока мое сердце бьется — я жив. Дыхание столь естественно для нас, что люди обычно не замечают его и не задумываются о том, как оно происходит и что за ним стоит. К счастью, этот пробел в общечеловеческой любознательности активно заполняют ученые всех мастей, от медиков до химиков и физиков. Попробуем взглянуть на дыхание глазами биолога.

Для современного биолога дыхание — не только и не столько «вдох-выдох, нос сопит, стекла запотели». Для биолога дыхание — это сложный биохимический процесс получения необходимой нашему телу энергии путем реакций различных питательных веществ с кислородом. Дыхание, по сути, — это то же самое, что горение, то есть реакция окисления веществ кислородом воздуха. Только происходит оно гораздо более медленно, постепенно и под жестким контролем организма.

Наши дыхательные пути и легкие решают проблему доставки кислорода из воздуха в кровь и высвобождения из крови углекислого газа. Наш желудочно-кишечный тракт обеспечивает поступление в кровь питательных веществ из пищи. Кровь доставляет кислород и питательные вещества ко всем клеткам нашего тела. Внутри практически каждой клетки есть специальные сложные структуры — органеллы, названные митохондриями, которые отвечают за главный этап дыхания — за «сжигание» питательных веществ кислородом и получение необходимой для жизни клетки энергии. Тут и начинается самое интересное.

1.6.2. Знакомьтесь: митохондрии!

Митохондрии — это вытянутые пузырьки внутри клетки, отделенные от остального ее содержимого двумя тонкими мембранами, состоящими из липидов и гидрофобных белков — жирных, нерастворимых в воде молекул (рис. 5). Эти мембраны — самое главное в процессе дыхания. Мембраны похожи на тонкие масляные пленки; они непроницаемы для большинства

водорастворимых молекул и ионов. Мембраны играют важнейшую роль в жизни клетки, надежно отделяя клетку от окружающей среды, а клеточные органеллы — от прочего внутриклеточного содержимого (цитоплазмы).

Внешняя мембрана митохондрий — гладкая, а внутренняя многократно складчата. В качестве аналогии можно представить еще не надутый воздушный шар, который смяли и засунули внутрь маленького воздушного шарика, а затем начали надувать. Маленький шарик снаружи будет круглый и гладкий, а большой шар внутри будет сморщенный и весь в складках.

Такое странное устройство мембран необходимо митохондриям, чтобы увеличить площадь внутренней мембраны. Ведь именно в этой мембране, прочно засев в ее жирной толще, находятся белки-ферменты, осуществляющие дыхание, т.е. окисление питательных веществ кислородом.

Дыхательные ферменты работают подобно миниатюрным насосам: сжигая «топливо», они перекачивают с одной стороны мембраны на другую электроны, а в обратную сторону — ионы водорода. Электроны несут отрицательный заряд, а ионы водорода — положительный. В результате работы дыхательных ферментов внутренняя мембрана митохондрии заряжается как конденсатор: внутри митохондрии получается минус, а снаружи — плюс. Жирная мембрана является хорошим электрическим изолятором и надежно держит высокое напряжение. Без этого митохондриям не обойтись — ведь напряженность электрического поля на внутренней мембране превышает 200 киловольт на сантиметр!

Затем энергия, накопленная в виде разности потенциалов на внутренней мембране митохондрий, используется для синтеза «энергетической валюты» клетки — аденозинтрифосфата (АТФ). Это — последний этап дыхания. Наверняка вам рассказывали про АТФ на уроках биологии еще в школе. Полученные молекулы АТФ покидают митохондрии, распределяются по всей клетке и используются везде, где необходимо провести энергозатратную химическую реакцию, будь то синтез ДНК, РНК или белков, транспорт ионов или питательных веществ в клетку или из нее, движение внутриклеточных органелл и т.д. При этом АТФ расщепляется с выделением необходимой энергии, а продукты его распада отправляются в митохондрии, чтобы там, на внутренней мембране, вновь соединиться в АТФ в процессе дыхания. Масштаб этого процесса иллюстрируется цифрой: взрослый человек образует в день 40 кг АТФ, чтобы расщепить все это количество за тот же срок при совершении разных видов работы. Таким образом, АТФ работает в клетке «универсальным посредником» между всевозможными питательными веществами, которые мы потребляем (чтобы получить необходимую для жизни энергию), и разнообразными биохимическими реакциями, в которых эта энергия используется.

Все это имеет самое прямое отношение к проблеме старения. Дело в том, что некоторые из белков-ферментов, которые сидят во внутренней мембране митохондрий и осуществляют процесс дыхания, делают это не совсем «чисто». То есть в ходе окисления питательных веществ кислородом получаются весьма вредные побочные продукты — активные формы кислорода (АФК). В силу своей химической неустойчивости и высокой реакционной способности АФК быстро и агрессивно реагируют практически с любыми органическими молекулами. В первую очередь это липиды и белки, образующие мембраны.

С липидами АФК расправляются особенно жестоко. Даже один-единственный зловредный радикал ОН* (одна из АФК) может начать цепную реакцию окисления: поврежденная молекула липида сама становится радикалом, повреждает следующую молекулу и так до тех пор, пока очередной радикал не встретит мо-лекулу-антиоксиданта, способную прервать этот порочный круг. Если это не случится, дело может дойти до повреждения ДНК, что особо опасно, так как может привести к искажению «инструкций» для синтеза белков, и в результате в клетке начнут появляться дефектные белки, мешающие ее нормальной жизни.

Повреждения белков, на первый взгляд, не должны быть серьезной угрозой для клетки: в норме большая часть белков постоянно портится, утилизуется и синтезируется вновь. Однако некоторые белки, например коллаген хрящей или сухожилий, или кристаллин в хрусталике глаза, практически не заменяются, и повреждения в них накапливаются с возрастом и приводят в итоге к целому ряду неприятностей из списка признаков старения. Кроме того, если повреждаются белки дыхательной цепи митохондрий, это может повысить скорость продукции АФК такими белками. Получается порочный круг: появляясь в митохондриях, АФК в первую очередь наносят повреждения самим митохондриям, что приводит не только к снижению эффективности окисления питательных веществ, но и к еще большей продукции АФК. В итоге разбалансированные митохондрии могут необратимо отравить и убить не только саму клетку, но и ее соседей. Более того, повышенная концентрация АФК является для клетки сигналом к самоубийству: после превышения определенного уровня АФК в митохондриях запускается цепь биохимических реакций, приводящая в итоге к гибели клетки — апопотозу.

В норме деление клеток жестко контролируется целым набором генов. Однако случайные повреждения ДНК могут приводить к мутациям и поломкам в механизме контроля деления. Как уже говорилось выше, стоит только одной-единственной клетке перестать ограничивать собственное деление — и начинается безудержное размножение, вызывающее рак.

АФК являются одним из основных факторов, приводящих к случайным повреждениям ДНК. Поэтому, если в клетке повышена концентрация АФК, эта клетка имеет более высокий шанс переродиться в раковую. Для организма появление единственной раковой клетки может оказаться смертельным. В этой связи неудивительно, что как только клетка «замечает», что в ней стало многовато АФК, она самоликвидируется посредством апоптоза. Тут уж лучше перестраховаться, чем допустить промашку.

Деление клеток контролируется набором генов. Случайные повреждения ДНК могут приводить к мутациям

И ПОЛОМКАМ В МЕХАНИЗМЕ КОНТРОЛЯ

деления. Стоит только одной-единст-венной клетке перестать ограничивать собственное деление — И НАЧИНАЕТСЯ БЕЗУДЕРЖНОЕ РАЗМНОЖЕНИЕ, ВЫЗЫВАЮЩЕЕ РАК.

Что же получается в итоге? В митохондриях клеток нашего тела в процессе дыхания вырабатываются АФК, которые медленно, но верно отравляют эти самые клетки и вызывают их гибель. Это касается практически всех клеток, но особенно важно для таких «энергоемких» органов, как мозг, сердце и мышцы. В результате с течением времени скорость гибели клеток возрастает. Способность же регенерировать и заменять погибшие клетки новыми с возрастом не растет, а наоборот, уменьшается. Все это вместе приводит к потере «клеточности» органов: в них падает количество полноценных, активных клеток. В свою очередь это ведет к снижению работоспособности органа и увеличению вероятности его отказа при стрессовой нагрузке. А увеличение вероятности отказа системы с возрастом — это и есть старение.

Ну что ж, подумаете вы, вот и славно! Хорошо, что ученые разобрались с причинами старения и все оказалось гладко и просто. Непонятно даже, отчего столько суеты и дискуссий вокруг этой темы, когда все и так уже ясно. К сожалению, причины для суеты и споров пока есть, и количество их весьма внушительно. Дело в том, что, как любая научная концепция, вышеописанная гипотеза о роли митохондрий и АФК в процессе старения — всего лишь одно из нескольких существующих объяснений. И для того, чтобы оценить, насколько она заслуживает доверия, необходимо чуть подробнее разобраться, на каких экспериментально установленных фактах она базируется.

Вот доказательства роли митохондрий и активных форм кислорода для процесса старения.

> Образование АФК в ходе работы ферментов дыхания во внутренней мембране митохондрий — установленный факт.

> Вредоносное действие АФК на белки, липиды и ДНК клетки — также установленный факт.

> Воздействие повышенных концентраций АФК на митохондрии запускает в клетке программу самоубийства (апоп-тоза), которое сопровождается дополнительным мощным выбросом АФК, — наблюдение, сделанное независимо во многих лабораториях мира. Кроме того, показано, что факторы, которые повышают «самоубийственную» активность клеток, приводят к ускоренному старению.

> В клетке существуют специальные системы защиты от АФК. Важное место среди них занимают ферменты, быстро нейтрализующие АФК. Показано, что усиление этих систем, а также внедрение вышеупомянутых ферментов с помощью генной инженерии в митохондрии может приводить к увеличению продолжительности жизни у животных.

> Животные, у которых из-за определенных мутаций была сильно снижена точность копирования митохондриальной ДНК (из-за чего в ней быстро накапливались повреждения и ошибки), были подвержены ускоренному старению. Кроме того, у этих животных наблюдалось повышенное окисление липидов внутренней мембраны митохондрий — четкий признак вредительства АФК. Это окисление, а также до некоторой степени и старение можно было предотвратить с помощью антиоксиданта, избирательно направленного в митохондрии (подробнее о таких антиоксидантах — в следующей главе).

> Если сравнить скорость образования АФК в митохондриях и продолжительность жизни разных видов животных, то можно увидеть хорошую корреляцию: чем ниже эта скорость, тем дольше животное живет.

Есть, правда, уже известный вам милый грызун, который не укладывается в общую картину и идет наперекор всем теориям. Вспомнили о сосиске с зубами? Да, это он, голый землекоп! У него, несмотря на весьма высокий уровень АФК, прямо-таки рекордная продолжительность жизни для грызунов.

Помимо парадокса голого землекопа, есть еще один аргумент против: ни один обычный антиоксидант до сих пор не смог не только предотвратить, но даже сколь бы то ни было серьезно замедлить старение у животных. Более того, некоторые антиоксиданты даже приводили к обратному эффекту, уменьшая продолжительность жизни. В чем же тут дело?

Начнем с непокорного и со всех сторон исключительного голого землекопа. Действительно, у него при достаточно интенсивной продукции АФК удивительно большая продолжительность жизни. Но как вы, наверное, помните из главы 1.4, голый землекоп стал звездой современной биологии потому, что он НЕ стареет! То есть, по нашему мнению, у него сломана программа старения. Поломка произошла где-то после АФК, и именно потому ему не страшны даже повышенные концентрации АФК.

Но коварный голый землекоп, тем не менее, все же «подкопал» любимую нами теорию. Внимательный и критически настроенный читатель, прочитав наше объяснение, спросит: ну а как, собственно, работает эта ваша программа старения после того, как произошло повышение концентрации АФК? Что там у землекопа не работает, но работает у большинства остальных млекопитающих, включая и нас с вами? На этот вопрос пока ясного ответа нет. Есть отдельные наблюдения, соображения и гипотезы, но описывать их в этой книге было бы преждевременно. Идет активная научно-исследовательская работа в лабораториях по всему миру, в том числе и у авторов книги. Когда ответ на этот вопрос будет получен, быть может, «таблетка от старости» станет не такой уж фантастической вещью, как кажется сейчас. Не будем забывать, что каких-нибудь 70 лет назад таблетка от воспаления легких казалась таким же недостижимым мифом. Следите за развитием событий, бойцы фронта борьбы со старением не отступают и не сдаются!

Но вернемся к более прозаичным вещам. Второй основной контраргумент против «теории АФК» — это неудачи при попытках применения антиоксидантов как средств против старения. Казалось бы, антиоксиданты, то есть вещества, которые нейтрализуют АФК и предотвращают их разрушительное окислительное действие на другие молекулы, — идеальный кандидат на роль «лекарства от старости». В чем же дело?

Во-первых, дело в том, что АФК не только выжигают липиды, портят ДНК и белки клетки и творят прочие непотребства, но также выполняют ряд жизненно важных функций. За сотни миллионов лет эволюции организмы привыкли жить в кислородной атмосфере с ее непременными спутниками — АФК. Более того, для многих из них сегодня жизнь без АФК уже невозможна. Интересный опыт поставил сотрудник МГУ Н.И. Гольдштейн. Он пропустил воздух между двумя пластинами магнита, улавливающими так называемые «отрицательные аэроионы», а именно молекулы аниона супероксида — предшественника почти всех АФК, образуемых в клетках человека и животных. Оказалось, что воздух без супероксида смертелен! Дыша таким воздухом, мыши погибали на 18-й день, а крысы — на 22-й. Смерть можно было предотвратить даже краткими, но регулярными сеансами дыхания обычным (не очищенным от супероксида) воздухом. Вряд ли супероксид воздуха служит грызунам реальным источником АФК. Простой расчет показывает, что та же мышка или крыса сама образует гораздо больше супероксида, чем они смогут получить через легкие из воздуха. По-видимому, речь идет о каком-то сигнале бедствия, который возникает при исчезновении супероксида из вдыхаемого воздуха. Интересно, что уровень супероксида измеряется не обычными обонятельными луковицами, а особыми рецепторами, находящимися тоже в носу, но в его специальной части — вомероназальном органе, ответственном за восприятие особо важных запахов (в частности, феромонов).

Нечто вредное для индивида не может быть выбраковано естественным отбором, так как оно же оказывается действующим ЛИЦОМ ДРУГОЙ, жизнеутверждающей пьесы. Поэтому применение обычных антиоксидантов, тем более

В УДАРНЫХ ДОЗАХ, МОЖЕТ ПРИВОДИТЬ К РАЗБАЛАНСИРОВКЕ ЖИЗНЕННО ВАЖНЫХ ФУНКЦИЙ.

Показано, что небольшие концентрации АФК зачем-то необходимы для деления клеток, процессов дифференцировки стволовых клеток в специализированные клетки соответствующих тканей и еще целого ряда нормальных проявлений жизнедеятельности и, в частности, синаптической пластичности и познавательной деятельности мозга. Большие концентрации АФК используются как «биологическое оружие» в борьбе фагоцитов с патогенными бактериями. Таким образом, наряду с мрачной функцией АФК как участников самоубийства отдельной клетки или даже индивида эти же самые вещества, оказывается, необходимы для организма. Здесь мы вновь сталкиваемся с ситуацией, уже рассмотренной выше, когда нечто вредное для индивида не может быть выбраковано естественным отбором, так как оно же оказывается действующим лицом другой, жизнеутверждающей пьесы. Поэтому применение обычных антиоксидантов, тем более — в ударных дозах, нередко приводит к разбалансировке жизненно важных функций.

Другая проблема заключается в том, что обычные антиоксиданты не достигают главного источника АФК в клетке — митохондрий. Ведь клетка отделена от внешней среды жирной липидной мембраной, а митохондрии отделены от остального клеточного содержимого еще двумя мембранами. Липидные мембраны плохо проницаемы для антиоксидантов, растворимых в воде, например аскорбиновой кислоты. А жирорастворимые антиоксиданты, наоборот, скапливаются в липидных мембранах, но, помимо мембраны митохондрий, попадают и во все прочие мембраны клетки, а также в жировую ткань. В результате для эффективного действия требуются высокие концентрации антиоксиданта, а его неспецифическое накопление во всех мембранах клетки и в жировых депо приводит к серьезным побочным отрицательным эффектам.

Было БЫ ЗДОРОВО НАЙТИ ТАКОЙ АНТИОКСИДАНТ, КОТОРЫЙ ПРОНИКАЛ БЫ СКВОЗЬ КЛЕТОЧНЫЕ МЕМБРАНЫ И ПОПАДАЛ ИМЕННО В МИТОХОНДРИИ.

Было бы здорово, скажете вы, чтобы нашелся такой антиоксидант, который бы мог проникать сквозь клеточные мембраны и попадать именно в митохондрии. В этом случае он не затрагивал бы важных для жизни функций АФК, и можно было бы избирательно и аккуратно регулировать «токсичные выбросы митохондрий», не нарушая баланса АФК в других местах. Вот тогда бы мы и увидели, чего стоит эта самая «теория АФК». Спешим вас обрадовать: есть такой антиоксидант! И даже не один, а целая палитра. Только он не сам нашелся, его придумали биохимики. Кто, когда и как — читайте в следующей главе.

ГЛАВА 1.7