Роль углеводов в опухолевом процессе

We use cookies. Read the Privacy and Cookie Policy

Роль углеводов в опухолевом процессе

Углеводы, или сахара, являются широко распространенными в природе веществами и играют важную роль в жизни животных и человека. Сахара являются единственным источником питания, например, для пчел, муравьев, у которых в организме они превращаются в аминокислоты, белки, ферменты, гормоны, витамины и т. д. В какой-то степени сахара (моносахариды) преобразуются в перечисленные вещества и в организме человека. Будем предположительно считать, что сахара являются наиглавнейшими веществами в жизни не только пчел, но и всех биологических организмов: человека, животных, птиц, рептилий, рыб и, конечно, растений.

При всех процессах жизнедеятельности, как у высших животных, включая человека, и у растений, так и у низших организмов и микроорганизмов, происходят сложные химические превращения углеводов (углеводный обмен). Так, нуклеиновые кислоты, необходимые для биосинтеза белков и для передачи наследственных свойств, построены частично из производных углеводов — нуклеотидов.

Оболочки клеток и целлюлоза также построены из углеводов. Формула углеводов Cm(Н2О)n, то есть они состоят из углерода и воды. Простые углеводы имеют формулу CnН2nOn. Сложные углеводы полисахариды имеют состав CmН2nOn.

Важнейшими представителями моносахаридов являются виноградный сахар — глюкоза и фруктовый сахар — фруктоза, для которых молекулярная формула имеет вид С6Н12О6, так как они являются изомерами.

В результате сложных ферментативных превращений из глюкозы в качестве промежуточного продукта образуется пировиноградная кислота. Ее дальнейший распад может пойти по пути образования молочной кислоты (лактозы) в случае недостатка кислорода. Из пировиноградной кислоты также могут вновь образовываться углеводы и некоторые аминокислоты (аланин, серин, цистеин и др.). Пировиноградная кислота является основой в цикле Кребса.

Все моносахариды и дисахариды обладают сладким вкусом. Если сладость сахарозы равна 175 %, глюкозы — 74 %, лактозы — 40 % и мальтозы — 32 %. Полисахариды (С6Н10О5)n являются одной из важнейших составных частей растительной пищи. Примерами являются: крахмал, гликоген, целлюлоза, инулин, декстран. Все полисахариды можно рассматривать как ангидриды простых сахаров. Свекловичный и тростниковый сахар (сахароза) являются наиболее известными представителями полисахаридов. Сахароза гидролизуется, давая глюкозу и фруктозу:

C12H22O11 +Н2О ? C6H12O6 +C6H12O6 Крахмал также гидролизуется слабыми кислотами

или ферментами по схеме:

(С6Н10О5)n ? (С6Н10О5) ? C12H22O11 ? C6H12O6

Гликоген (животный крахмал) является сложным углеводом животного происхождения. При гидролизе кислотами гликоген распадается вначале на декстрины, а затем на мальтозу и глюкозу.

Гликоген играет в организме человека и животных особо важную роль, как запасный полисахарид. В тканях организма из гликогена после сложных преобразовалий образуется молочная кислота. Этот процесс носит название гликолиз. Гликоген извлекается из ткани с трудом, так как находится в виде комплекса с белками клеток. Такие соединения образуют вещества, которые называются гетерополисахаридами (мукополисахаридами). К ним, в частности, относятся гиалуроновая кислота, хондроитинсерная кислота, гепарин и кеpато-сульфаты. При различных заболеваниях соединительной ткани нарушается процесс биосинтеза и происходит распад мукополисахаридов. В частности, при этом наблюдаются явления ревматизма, неспецифического полиартрита, несовершенного остеогенеза и других.

Отметим исключительную важность при этом, например, гиалуроновой кислоты и глюкозамина, у которого один из водородов аминогруппы замещен на остаток уксусной кислоты. При гидролизе гиалуроновая кислота распадается на аминосахар (глюкозамин), глюкуроновую и уксусную кислоты.

Гиалуроновая кислота встречается в составе стекловидного тела глаза, в пупочном канатике и соединительной ткани. Она является цементирующим веществом в сосудистой стенке, препятствует проникновению в ткани болезнетворных организмов и предотвращает выпотевание жидкой части крови в окружающие ткани. Кроме того, много гиалуроновой кислоты содержится в оболочках женских яйцеклеток. То же самое можно сказать и о хондроитинсерной кислоте и гепарине. Первая содержится в трахеях, костях, хрящах, аортах и соединительной ткани в комплексе с белковыми веществами, образуя хондромукоиды. При гидролизе хондроитинсерной кислоты образуется галактозамин, глюкуроновая, уксусная и серная кислоты. Аналогичными свойствами обладает микоитинсерная кислота и гетерополисахарид. Гепарин содержится в печени, легких, сердце и скелетных мышцах. В молекуле гепарина содержится глюкуроновал кислота, глюкозамин и серная кислота. Синтезируется гепарин в тучных клетках печени, а распад гепарина происходит в почках. Гепарин, являющийся кислым мукополисахаридом, обладает мощным анионным зарядом и, попадая в кровь, вызывает изменение электрического заряда тромбоцитов. Гепарин взаимодействует с фибриногеном. При этом одна молекула гепарина связывает 10 молекул фибриногена, то есть эквивалент 10 атомам галогена.

Анализируя кислоты мукополисахаридов, мы приходим к выводу, что эти кислоты являются наиболее приемлемыми с точки зрения нейтрализации щелочных аминокислот, белков и ферментов раковых опухолей. Особенно положительно действуют в этом плане мукополисахариды на серной кислоте, например, хондроитинсерная кислота, гепарин и др.

Действительно, защищенность органов от раковых образований и, вообще, от других болезней как раз и определяется мукополисахаридами. Иммунитет организма в основе своей определен именно мукополисахаридами. Все дело в количестве этих мукополисахаридов. Если в каком-либо органе мукополисахаридов достаточно, то этот орган будет невосприимчивым к болезням и к опухолевому процессу в частности. Точно так же мукополисахариды останавливают развитие метастазов и рост самой опухоли. Таким образом, я прихожу к выводу о том, что кислоты мукополисахаридов за счет серной кислоты, так же как соляная и уксусная кислоты, вступают в полную силу в борьбе с опухолями и другими болезнями. К гетерополисахаридам относятся также многие полисахариды бактерий и, в частности, иммунополисахариды, выделяемые бактериями и играющие важную роль в создании иммунитета — невосприимчивости к определенной болезни. Сюда же относятся специфические полисахариды, определяющие группы крови. Почти во всех случаях главную роль в возникновении иммунитета играет анион SО42

Теперь перейдем к рассмотрению свободных радикалов, которые являются наиглавнейшими инициаторами в образовании опухолей.

Данный текст является ознакомительным фрагментом.