ГЛАВА 5 ПОДКОРКОВЫЕ УЗЛЫ (ЯДРА)
ГЛАВА 5
ПОДКОРКОВЫЕ УЗЛЫ (ЯДРА)
Помимо коры, образующей поверхностные слои конечного мозга, скопления серого вещества в полушариях большого мозга присутствуют в виде отдельных ядер, или узлов. Эти узлы находятся в толще белого вещества, ближе к основанию мозга. Скопления серого вещества называются базальными (подкорковыми, центральными) ядрами, или узлами, ввиду их особого положения. К базальным ядрам полушарий головного мозга относят полосатое тело, состоящее из хвостатого и че-чевицеобразного ядер, ограды и миндалевидного тела.
К белому веществу полушария относятся волокна, которые соединяют различные участки коры в пределах одного полушария (ассоциативные волокна) или кору с подкорковыми центрами данного полушария. Наряду с короткими ассоциативными нервными волокнами в белом веществе различают крупные длинные пучки, имеющие продольную ориентацию и соединяющие далеко отстоящие друг от друга участки коры большого мозга.
Полосатое тело получило свое название в связи с тем, что на горизонтальных и фронтальных разрезах мозга оно имеет вид чередующихся полос серого и белого вещества. Медиаль-нее и впереди находится хвостатое ядро. Оно находится кпереди от таламуса. Если рассматривать горизонтальный разрез, хвостатое ядро отделяет от таламуса полоска белого вещества – передняя ножка внутренней капсулы. Передний отдел хвостатого ядра утолщен и образует головку. Она образует наружную стенку переднего рога бокового желудочка. Головка хвостатого ядра находится в лобной доле полушария мозга и примыкает к передней продырявленной субстанции. Здесь происходит соединение головки хвостатого ядра с чечевице-образным ядром. Головка суживается сзади и переходит в более тонкое тело, которое лежит в области дна центральной части бокового желудочка и разделяется с таламусом терминальной полоской белого вещества. Задний отдел хвостатого ядра – хвост постепенно истончается, загибается вниз, участвует в формировании верхней стенки нижнего рога бокового желудочка. Хвост тянется до миндалевидного тела, которое расположено в переднемедиальных отделах височной доли (кзади от переднего продырявленного вещества). Снаружи от головки хвостатого ядра можно найти прослойку белого вещества – это передняя ножка внутренней капсулы, отделяющая хвостатое ядро от чечевицеобразного.
Чечевицеобразное ядро, получившее свое название за сходство с чечевичным зерном, находится латеральнее таламу-са и хвостатого ядра. От таламуса чечевицеобразное ядро отделяет задняя ножка (бедро) внутренней капсулы. Нижняя поверхность переднего отдела чечевицеобразного ядра прилежит к переднему продырявленному веществу и соединяется с хвостатым ядром. Медиальная часть чечевицеобразного ядра на горизонтальном разрезе головного мозга суживается и ее угол направлен к колену внутренней капсулы, находящемуся на границе таламуса и головки хвостатого ядра.
Латеральная поверхность чечевицеобразного ядра выпуклая и направлена к основанию островковой доли полушария большого мозга. На фронтальном разрезе головного мозга че-чевицеобразное ядро в виде треугольника, вершина его обращена в медиальную сторону, а основание – в латеральную. Чечевицеобразное ядро делится на три части. Это разделение осуществляют две параллельные вертикальные прослойки белого вещества, расположенные почти сагиттально. Наиболее латерально расположена скорлупа, имеющая более темную окраску.
Медиальнее скорлупы расположены две мозговые пластинки светлого цвета – медиальная и латеральная, которые имеют одно общее название «бледный шар». Медиальную пластинку называют медиальным бледным шаром, латеральную – латеральным бледным шаром. Хвостатое ядро и скорлупа относятся к более высоким филогенетическим образованиям. Бледный шар является более старым образованием. Ограда расположена в белом веществе полушария, сбоку от скорлупы, между последней и островковой корой. Ограда имеет вид тонкой вертикальной пластинки серого цвета. От скорлупы ее отделяет прослойка белого вещества – наружная капсула, а от коры большого мозга – такая же прослойка, которая получила название «самая наружная капсула».
Миндалевидное тело находится в белом веществе височной доли полушария, приблизительно на 1,5–2,0 см кзади от височного полюса.
Белое вещество полушарий большого мозга представлено различными системами нервных волокон, среди которых выделяют:
1) ассоциативные;
2) комиссуральные;
3) проекционные.
Эти пути рассматривают как проводящие пути головного и спинного мозга. Ассоциативные нервные волокна, которые выходят из коры полушария (экстракортикальные), располагаются в пределах одного полушария, соединяя различные функциональные центры. Комиссуральные нервные волокна проходят через спайки мозга (мозолистое тело, передняя спайка). Проекционные нервные волокна, идущие от полушария большого мозга к нижележащим его отделам (промежуточный, средний и др.) и к спинному мозгу, а также следующие в обратном направлении от этих образований, составляют внутреннюю капсулу и ее лучистый венец.
Внутренняя капсула представляет собой толстую, изгибающуюся под углом пластинку, состоящую из белого вещества. С наружной стороны она ограничена чечевицеобразным ядром, а с внутренней – головкой хвостатого ядра (спереди) и таламусом (сзади). Внутреннюю капсулу делят на три части. Между хвостатым и чечевицеобразным ядрами находится передняя ножка внутренней капсулы, между таламусом и чече-вицеобразным ядром – задняя ножка внутренней капсулы в виде угла, открытого в латеральную сторону. Во внутренней капсуле проходят все проекционные волокна, которые связывают кору большого мозга с различными отделами центральной нервной системы. В колене внутренней капсулы располагаются волокна корково-ядерного пути, который направляется из коры предцентральной извилины к двигательным ядрам черепных нервов. В переднем отделе задней ножки, непосредственно прилежащем к колену внутренней капсулы, находятся корково-спинномозговые волокна. Этот двигательный путь, как и предыдущий, начинается в предцентральной извилине и следует к двигательным ядрам передних рогов спинного мозга. Кзади от перечисленных проводящих путей в задней ножке располагаются таламокортикальные (таламотеменные) волокна.
Они представлены отростками клеток таламуса, направляющимися в кору постцентральной извилины. В составе этого проводящего пути содержатся волокна проводников всех видов общей чувствительности (болевой, температурной, осязания и давления, проприоцептивной). Еще более кзади от этого тракта центральных отделов задней ножки находится височно-теменно-затылочно-мостовой путь. Волокна этого пути начинаются от клеток различных участков коры затылочной, теменной и височной долей больших полушарий головного мозга. Далее они следуют к ядрам моста, расположенного в передней базиллярной части мозга. В задних отделах задней ножки располагаются слуховой и зрительные проводящие пути. Они берут начало от подкорковых центров слуха и зрения и заканчиваются в соответствующих корковых центрах. Передняя ножка внутренней капсулы содержит лобно-мостовой путь.
Волокна восходящих проводящих путей расходятся в различные стороны, образуя так называемый лучистый венец-корону. Книзу волокна нисходящих путей внутренней капсулы в виде компактных пучков направляются в ножку среднего мозга.
Ядро – это также место концентрации нервных клеток коры, представляющее собой точную проекцию всех составляющих элементов соответствующего периферического рецептора. В ядре осуществляется анализ, синтез и интеграция функций.
Рассеянные элементы могут располагаться в непосредственной близости от ядра или же на большом расстоянии от него. В этих элементах происходят более простые анализ и синтез. Положение некоторых корковых центров представлено ниже.
Ядро коркового анализатора общей (температурной, болевой, осязательной) и проприоцептивной чувствительности образуют нейроны, находящиеся в коре постцентральной извилины (поля 1, 2, 3) и верхней теменной дольки (поля 5 и 7). Проводящие чувствительные пути, следующие к коре большого мозга, перекрещиваются либо на уровне различных сегментов спинного мозга (пути болевой, температурной чувствительности, осязания и давления), либо на уровне продолговатого мозга – это пути проприоцептивной чувствительности. Вследствие этого постцентральные извилины каждого из полушарий связаны с противоположной половиной тела.
Ядро двигательного анализатора находится в двигательной области коры полушария головного мозга, в месте расположения предцентральной извилины и парацентральной дольки на внутренней поверхности полушария.
Предцентральная извилина (поля 4 и 6) и парацентральная долька находятся на медиальной поверхности полушария. В V слое (пластинке) коры предцентральной извилины залегают гиганто-пирамидальные нейроны (клетки Беца). Эти клетки посредством отростков имеют связь с подкорковыми ядрами, двигательными клетками ядер черепных и спинномозговых нервов. В верхних частях предцентральной извилины и в парацентральной дольке находятся нейроны, импульсы от которых идут к мускулатуре самых нижних отделов туловища и конечностей. В нижней части предцентральной извилины расположены двигательные центры, осуществляющие регуляцию лицевых мышц. Можно сказать, что все части тела спроецированы в предцентральной извилине как бы вверх ногами. Пирамидные пути, начинающиеся от гиганто-пирами-дальных нейронов, перекрещиваются либо на уровне мозгового ствола (корково-ядерные волокна), либо на границе с бульбу-сом (латеральный корково-спинномозговой путь), либо в сегментах спинного мозга (передний корково-спинномозговой путь), двигательные области каждого из полушарий связаны со склетной мускулатурой противоположной стороны тела. Мышцы конечностей имеют изолированную связь с одним из полушарий, а мускулатура туловища, гортани и глотки имеет связь с двигательными областями обоих полушарий.
Ядро анализатора, отвечающее за функции сочетанного поворота головы и глаз в противоположную сторону, находится в задних отделах средней лобной извилины, в так называемой премоторной зоне (поле 8). Сочетанный поворот глаз и головы регулируется также при поступлении импульсации из сетчатой оболочки глаза в поле затылочной доли, а не только проприо-цептивными импульсами от мышц глазного яблока. В поле затылочной доли находится ядро зрительного анализатора.
Ядро двигательного анализатора расположено в нижней теменной дольке, в надкраевой извилине (глубоком слое цитоархитектонического поля 40). Функциональное значение этого ядра – синтез всех целенаправленных, сложных, комбинированных движений. Это асимметричное ядро. У правшей оно расположено в левом, а у левшей – в правом полушарии. Способность к координации сложных и точных движений приобретается человеком в течение жизни в результате практики и накопления опыта. Целенаправленные движения осуществляются в результате возникновения временных связей между клетками, расположенными в предцентральной и над-краевой извилинах.
Ядро кожного анализатора – одного из частных видов чувствительности, который обладает функцией распознавания предметов на ощупь (стреогнозии), расположено в коре верхней теменной дольки (поле 7). Корковая часть этого анализатора локализована в правом полушарии и представлена проекцией рецепторных полей левой руки. Таким образом, ядро этого анализатора для правой верхней конечности расположено в левом полушарии. Поражение поверхностных слоев коры в этой части мозга выражается в утрате функции распознавания предметов на ощупь, но другие виды общей чувствительности при этом поражении сохранены.
Ядро слухового анализатора находится в глубине латеральной борозды, на стороне, обращенной к островку поверхности средней части верхней височной извилины (где можно заметить поперечные височные извилины, называемые также извилинами Гешля). К первым клеткам, составляющим ядро слухового анализатора полушарий мозга, идут проводящие пути от рецепторов левой и правой стороны. Поэтому одностороннее поражение данного ядра не характеризуется полной утратой способности звукового восприятия. Двустороннее поражение сопровождается «корковой глухотой».
Ядро зрительного анализатора находится на медиальной поверхности затылочной доли полушария большого мозга, по обеим сторонам от шпорной борозды (поля 17, 18, 19). Ядро зрительного анализатора правого полушария имеет связь с проводящими путями, идущими от наружной половины сетчатки правого глаза и внутренней половины сетчатки левого глаза. В коре затылочной доли левого полушария соответственно происходит проецирование рецепторов наружной половины сетчатки левого глаза и внутренней половины сетчатки правого глаза. Только сочетанное двустороннее поражение ядер зрительного анализатора заканчивается полной «корковой слепотой». Поражение поля 18, находящегося несколько выше поля 7, сопровождается потерей зрительной памяти, но не слепотой. Наиболее высоко по отношению к двум предыдущим в коре затылочной доли расположено поле 19, нарушение деятельности которого приводит к утрате способности ориентироваться в незнакомой обстановке.
Ядро обонятельного анализатора находится в области нижней поверхности височной доли полушария большого мозга, в месте крючка и отчасти в области гипокампа (поле 11). Эти участки относятся к наиболее филогенетически древним частям коры большого мозга. Чувство обоняния и чувство вкуса между собой тесно связаны, по-видимому, близким расположением ядер обонятельного и вкусового анализаторов. Обычно вкусовое восприятие нарушается при поражении коры самых нижних отделов постцентральной извилины (поле 43). Ядра вкусового и обонятельного анализаторов обоих полушарий имеют связь с рецепторами левой и правой стороны тела. Описанные корковые концы ряда анализаторов есть в коре полушарий большого мозга не только человека, но и у животных. Они ответственны за восприятие, анализ и синтез импульсов, идущих из внешней и внутренней среды, и составляют, по определению И. П. Павлова, первую сигнальную систему действительности. Эти сигналы (за исключением речи, слова – слышимого и видимого), поступающие из окружающего нас мира, в том числе из социальной среды, в которой существует человек, воспринимаются в виде ощущений, впечатлений и представлений.
Вторая сигнальная система присутствует только у человека, и существование ее обусловлено развитием речи. Речевые и мыслительные функции осуществляются при помощи всех отделов коры, но в коре большого мозга выделяются определенные зоны, отвечающие только за функции речи. Двигательные анализаторы речи (устной и письменной) находятся вблизи двигательной области коры, а именно в участках коры лобной доли, примыкающих к предцентральной извилине. Анализаторы зрительного и слухового восприятия речевых сигналов расположены по соседству с анализаторами зрения и слуха. Обычно речевые анализаторы у правшей располагаются в левом полушарии, а у левшей в правом. Ядро двигательного анализатора письменной речи (анализатора произвольных движений, связанных с написанием букв и знаков) расположено в задней части средней лобной извилины (поле 40). Оно тесно прилегает к отделам предцентральной извилины, имеющим функцию двигательного анализатора верхней конечности и сочетанного поворота головы и глаз в противоположную сторону. Разрушение данного поля не вызывает утраты всех видов движений, а сопровождается только нарушением способности производить рукой точные и тонкие движения при написании букв, знаков и слов (аграфия).
Ядро двигательного анализатора произношения речи (ре-чедвигательный анализатор) находится в задних отделах нижней лобной извилины (поле 44, или центр Брока). Это ядро находится на границе с теми частями предцентральной извилины, которые анализируют движения, производимые при сокращении мышц головы и шеи. В речедвигательном центре происходит анализ движений всей мускулатуры, принимающей участие в акте устной речи: губ, щек, языка, гортани. Повреждение части коры этой области (поле 44) вызывает двигательную афазию, т. е. утрату способности произносить слова. Такая афазия не вызвана утратой функции мускулатуры, принимающей участие в образовании речи. При поражении поля 44 сохраняется способность к произношению звуков или даже пению. В центральных отделах нижней лобной извилины (поле 45) расположено ядро речевого анализатора, ответственного за пение.
Поражение поля 45 сопровождается вокальной амузией – неспособностью к составлению и воспроизведению музыкальных фраз и аграмматизмом – утратой способности связывать отдельные слова в осмысленные предложения. Речь этих пациентов состоит из не связанного по смысловому значению набора слов.
Ядро слухового анализатора устной речи имеет тесную связь с корковым центром слухового анализатора и располагается, как и слуховой анализатор, в области верхней височной извилины. Это ядро находится в задних отделах верхней височной извилины, на той стороне, которая обращена к наружной борозде полушария большого мозга (поле 42).
Поражение ядра не нарушает общего слухового восприятия, но при этом человек теряет способность понимать слова, речь (словесная глухота, или сенсорная афазия). Функция этого ядра заключается в том, чтобы человек мог не только воспринимать на слух и понимать чужую речь, но и контролировать при этом свою собственную.
В средней трети верхней височной извилины (поле 22) расположено ядро коркового анализатора, при поражении которого наступает музыкальная глухота: музыкальные фразы человек слышит в виде бессмысленного и беспорядочного набора различных шумов. Этот корковый конец слухового анализатора относится ко второй сигнальной системе, к ее центру, анализирующему вербальное обозначение предметов, действий, явлений.
Ядро зрительного анализатора письменной речи находится вблизи ядра зрительного анализатора – в угловой извилине нижней теменной дольки (поле 3). При поражении этого ядра человек не может воспринимать написанный текст, читать (алексия).
В функциональном отношении подкорковые узлы (хвостатое ядро и скорлупа) объединяются в стриатум, а бледный шар вместе с черным веществом и красными ядрами, расположенными в ножках мозга, а также субталамическим ядром – в па-ллидум.
Вместе они представляют очень важное в функциональном отношении образование – стриопаллидарную систему. По морфологическим особенностям и филогенетическому происхождению паллидум является более древним, а стриатум – более молодым образованием. Паллидум содержит большое количество нервных волокон и некоторое количество крупных клеток. Хвостатое ядро и скорлупа включают в себя множество мелких и крупных клеток и небольшое количество нервных волокон.
В стриарной системе имеется соматотопическое распределение: в оральных отделах – голова, в средних – руки, в кау-дальных отделах – туловище и ноги. Между стриарной и па-ллидарной системами существует тесная связь. Подкорковые структуры имеют значительно более тонкий аппарат обработки информации по сравнению с «сегментом», прежде всего в связи с наличием нескольких независимых афферентных каналов, а также благодаря работе подкорковой эфферентной системы (стриопаллидарной). Стриопаллидарная система непосредственно не связана с мышцей, но, управляя ею через посредничество сегментарных эфферентных центров, принимает участие в выработке сложных автоматизированных двигательных актов, требующих согласованной работы многих групп мышц. Располагая тонкодифференцированной системой приема и обработки информации, собственными эфферентными каналами, подкорковый интегративный уровень одновременно является следующим этапом кодирования афферентных сигналов, обеспечивающим отбор важнейших сведений и подготовку их к приему в коре больших полушарий. Таким образом, информация, которая по афферентным каналам поступает в кору больших полушарий, предварительно обрабатывается, перекодируется по крайней мере на трех этапах: рецепторно-эффекторном, сегментарном и подкорковом. Каждый интегративный уровень самостоятельно обрабатывает часть информации и вырабатывает ответ, важнейшие же сведения посылает в вышележащие центры, которые в свою очередь выполняют ту же задачу. Вследствие этого в кору поступают лишь те сигналы, которые требуют сознательных, целенаправленных действий человека.
Многократное перекодирование афферентных импульсов на их пути к коре обеспечивает поэтапный «отсев» сигналов, не имеющих решающего значения для организма в целом и подлежащих обработке на «докортикальных» уровнях интеграции. Наряду с этим ошибка в работе любого «докортикаль-ного» уровня интеграции должна привести к поступлению извращенной информации в кору, и последняя, не имея непосредственной связи с внешним источником информации, будет вырабатывать ошибочное решение. Этого не происходит благодаря многоканальному поступлению афферентных импульсов к коре, что обеспечивает объективную оценку информации каждого афферентного канала, своевременное обнаружение «ошибки» и компенсацию, коррекцию ее. Так, например, снижение зрения приводит к активизации деятельности слухового анализатора, анализатора чувствительности; нарушение координации движений, обусловленное снижением чувствительности, компенсируется усилением зрительного контроля за положением тела в пространстве. Импульсы, направляемые в кору, первоначально поступают в так называемые проекционные корковые зоны, в которых получает отражение, «проецируется» информация от всех рецепторных зон, но уже в обработанном, сжатом виде. Анализ и синтез этой информации осуществляется в корковых центрах, обеспечивающих «узнавание» – сопоставление принимаемых сигналов с хранимым в памяти мозга «образом» источника информации, обновление и конкретизацию его (гностические центры).
На основании согласованной работы всех гностических центров вырабатывается объективное представление об окружающей человека среде и состоянии самого организма. В результате анализа ситуации и реальных возможностей двигательных систем на данный момент формируется «решение» – план действия.
Реализация плана действия осуществляется центрами праксиса, обеспечивающими подбор и последовательное включение сложившихся двигательных автоматизмов, адекватных создавшимся условиям среды. Центры праксиса являются высшими центрами управления двигательными актами, и в их «подчинении» находятся все эфферентные системы нижележащих интегративных уровней, ритм работы и активность которых зависят от нисходящих корковых влияний.
В условиях нормальной работы нервной системы в целом эфферентные сигналы спускаются сверху вниз по всем этапам, проходя проекционную двигательную область, подкорковые эфферентные структуры и мозжечок, сегментарный двигательный аппарат, и следуют к мышце, последовательно перекодируясь на каждом интегративном уровне.
Сигналы центров праксиса, подкоркового аппарата «непонятны» мышце и поэтому не могут миновать конечный двигательный путь – сегментарный мотонейрон.
Автономная работа интегративных уровней, «замыкание» (афферентация) на собственные эфферентные центры в норме сведена до минимума, и последние находятся в основном под влиянием тех импульсов, которые спускаются сверху.
В случае поражения того или иного уровня должны нарушаться его собственные влияния на нижележащие центры и прерываться связь их с корой, поэтому кора располагает дополнительными каналами эфферентации, которые доставляют команду мышце, минуя пораженный отдел. Если все же наступает перерыв корковых влияний на расположенные ниже ин-тегративные уровни, последние переходят на автономный режим работы, посылая все свои афферентные сигналы к собственным эфферентным системам. Этим обусловлен феномен растормажи-вания низших систем при поражении вышележащих. Афферентные и эфферентные системы тесно взаимодействуют, поскольку являются звеньями рефлекторных дуг. Поэтому поражение афферентных систем может приводить к расстройствам рефлекторной деятельности, когда эффекторный, рабочий аппарат реализации рефлекса остается сохранным.
В иерархии нервных центров особое место занимает кора больших полушарий. Благодаря поступлению информации от различных функциональных систем в коре возможны наиболее сложная аналитико-синтетическая деятельность по переработке информации, образование связей, позволяющих закреплять индивидуальный опыт, и блокирование тех связей, которые утрачивают значение. Кора больших полушарий отвечает за обучение, т. е. в конечном итоге самосовершенствование живых систем, принятие решений, основанных не только на анализе данной ситуации, но и на результате предшествующего опыта.
Функциональная активность центральной нервной системы регулируется постоянным притоком афферентных импульсов благодаря функционированию неспецифических структур мозга, прежде всего ретикулярной формации. В ретикулярную формацию отходят коллатерали от всех специализированных афферентных проводников. В итоге ретикулярная формация является своеобразным энергетическим коллектором, откуда могут поступать активизирующие влияния в различные центры вплоть до коры больших полушарий. Этим создается возможность организации реакций даже на весьма слабые раздражители. От ретикулярной формации исходят и тормозящие влияния – как восходящие, так и нисходящие, что обеспечивает «прицельность» отдельных реакций, концентрацию внимания. Поскольку у человека принцип цефа-лизации достигает наивысшей степени, поражение коры больших полушарий может приводить к наибольшим расстройствам по сравнению с представителями животного мира. Однако если сопоставить корковые расстройства с симптомами, возникающими при поражении нижележащих отделов, окажется, что даже весьма обширные корковые очаги могут проявляться очень неотчетливо либо совсем не проявляться, чего нельзя сказать об очагах, находящихся в низших отделах. Это обусловлено тем, что в коре больших полушарий происходит анализ и синтез сигналов, которые уже в значительной степени обработаны в нижележащих центрах, и результаты этой обработки могут быть использованы для осуществления весьма сложных и разнообразных реакций без активного участия корковых отделов.