5. Невидимые помощники медиков

We use cookies. Read the Privacy and Cookie Policy

5. Невидимые помощники медиков

Из плесени и грибов

Французский ученый Луи Пастер впервые заметил, что одни микробы могут подавлять развитие других при помощи веществ, выделяемых ими в окружающую среду. Это явление было названо антибиозом, а вещества, которые выделяются микробами и подавляют жизнедеятельность других микробов, — антибиотиками.

Русский ученый И. И. Мечников впервые указал на возможность практического использования антибиоза, предложив вводить молочнокислые бактерии в кишечник для подавления гнилостных микробов.

Первым антибиотиком, полученным в чистом виде, был пенициллин — продукт жизнедеятельности некоторых плесневых грибов.

Антибактериальные свойства зеленой плесени впервые были установлены русскими учеными В. А. Манасеиным в 1871 г. и А. Г. Полотебновым в 1872 г. Они применяли зеленую плесень для лечения гнойных ран и хронических язв. Но несовершенство техники в то время не позволило выделить пенициллин из зеленой плесени в чистом виде.

В 1928 г. целительное действие плесневого гриба было открыто вторично английским ученым — микробиологом Александром Флемингом. А началось все с «испорченного» опыта.

Однажды Флеминг, проводя очередной опыт по изучению стафилококков, заметил, что чашки с выросшей желтой колонией этих микробов были местами покрыты зеленой плесенью. Сначала он хотел выбросить чашку с «зацветшей» культурой микробов. Но интуиция исследователя пересилила чувство досады. Внимательно рассматривая содержимое чашки, он вдруг увидел, что вокруг плесени не было стафилококков.

Флеминг решил сам вырастить плесень и еще раз проверить ее действие на вредоносные микробы. Небольшой кусочек он поместил в питательный бульон. Исследуя вещество, выделенное плесенью (Флеминг назвал его пенициллином по имени плесневого гриба), ученый окончательно убедился, что оно губительно для стафилококков. Оказалось, что пенициллин, даже разведенный в 600 раз, сохраняет свои антимикробные свойства.

И еще одно важное открытие сделал Флеминг. Если бульон с пенициллином подкислить кислотой и взболтать с эфиром, то можно извлечь пенициллин из жидкой культуры гриба. Однако при попытке испарить эфир пенициллин немедленно разрушался.

Казалось, что нет никакой возможности выделить пенициллин в чистом виде, а следовательно, его нельзя использовать как лекарство. А между тем это таинственное вещество было губительно не только для стафилококков, но и для пневмококков, менингококков и многих других микробов.

Началась вторая мировая война. Вот тогда-то и вспомнили о пенициллине. Нужно было во что бы то ни стало найти способ его выделения в чистом виде. Это необходимо было для спасения жизни тысяч раненых.

За дело взялись химики. Было замечено, что если прилить к эфиру, содержащему пенициллин, раствор соды, то пенициллин перейдет из эфира в водный слой. Казалось бы, проблема решена. Но возникла новая трудность. Пенициллин в содовом растворе оказался нестойким и быстро разлагался. Необходимо было получить его в виде кристаллического порошка. Английский химик Чайн предложил заморозить концентрированный водный раствор при температуре —40 °C в особом аппарате и высушить его. Полученные по этому способу кристаллики пенициллина оказались стойкими и сохраняли свою целительную силу не менее полугода. В Советском Союзе исследования пенициллина были начаты в 1942 г. З. В. Ермольевой. В самый разгар войны в одном из московских подвалов были расставлены чашки с культурой плесени. Из них после проверки в лаборатории отобрали одну, наиболее активную, и из нее выделили пенициллин. После окончания войны по разработанному З. В. Ермольевой методу выращивания плесневого гриба и получения пенициллина было организовано его производство на заводах в разных городах нашей страны.

Успешное применение пенициллина в медицине способствовало поиску других грибов-исцелителей. Еще в конце 30-х гг. советский ученый Н. А. Красильников обнаружил у некоторых лучистых грибов, которые обитают в почве и обладают характерным земляным запахом, способность, подобно пенициллину, уничтожать микробов. Впервые один из антибиотиков, вырабатываемых лучистыми грибами-актиномицетами, был получен и описан известным американским ученым, будущим лауреатом Нобелевской премии Ваксманом и назван стрептомицином.

В годы Великой Отечественной войны в Москве в лаборатории Института малярии, руководителем которой был тогда профессор Г. Ф. Гаузе, были начаты широкие исследования почвенных грибов для получения грамицидина.

«Все столы в лаборатории, — пишет лауреат Государственной премии М. Г. Бражникова, — были заставлены стеклянными плоскими тарелочками, так называемыми чашками Петри. На других столах были расставлены штативы с пробирками, наполненными землей.

Пробы земли ученые собирали повсюду — во дворах, огородах, на свалках, в лесах и полях Подмосковья. Карманы сотрудников были полны маленькими сверточками с землей, Землю приносили в лабораторию, пересыпали в пробирки и в каждую пробирку наливали немного воды, чтобы получилась земляная каша. В чашки Петри наливали питательную среду, содержащую мясной бульон и сахар. Каплю взвеси, содержащую тысячи опасных микробов (отдельно приготовленных стафилококков), помещали на поверхность застывшей питательной среды, а затем на ту же поверхность наносили каплю земляной каши из пробирки. Засеянные таким образом чашки выдерживали в термостате при определенной температуре.

За это время на поверхности студня вырастали десятки различно окрашенных точек — желтые колонии стафилококков вперемешку с желтыми, красными, синими, белыми, прозрачными, круглыми, зубчатыми, бахромчатыми колониями почвенных микробов. Вокруг некоторых колоний почвенных микробов можно было ясно различить „зону пустыни“. Эти почвенные микробы ограждали себя, выпуская в окружающую среду какое-то вещество, которое подавляло все живое»[6].

После долгих и кропотливых исследований удалось выделить это антимикробное вещество в чистом виде и определить его химический состав. Так появился грамицидин С. Он отличался от американского отсутствием некоторых аминокислот. Этот антибиотик оказался более стойким, чем пенициллин и стрептомицин. Он не боится ни кислот, ни щелочей, не разрушается при долгом хранении. Даже при разведении в миллион раз он подавляет рост гноеродных бактерий. Грамицидин С применяют для лечения инфицированных ран, язв, ожогов.

За последние годы открыты сотни различных антибиотиков. Поиски новых и новых антибиотиков необходимы, поскольку препарат перестает действовать, если больного в течение длительного времени лечить каким-либо одним антибиотиком. Микробы привыкают к нему, и нередко вырабатывается особый фермент, который защищает их от действия антибиотика. В таких случаях врач прописывает пациенту другой антибиотик. Следовательно, чем больше существует антибиотиков, тем легче подобрать нужный вид. Ведь у каждого микроба своя «сфера деятельности» — одни вызывают заболевания легких, другие — кишечника, третьи — кожи. Лечебная практика показала, что нередко при тяжелых заболеваниях одному антибиотику не под силу воевать с микробами. В таких случаях теперь пользуются сразу несколькими, вернее, такой их комбинацией, при которой антибиотики дополняют и усиливают действие друг друга. Например, олеандомицин назначают с тетрациклином, пенициллин со стрептомицином.

В создании новых антибиотиков микробиологам помогают химики. Меняя «архитектуру» молекул антибиотиков, они придают им новые свойства. Реконструкция молекул дала возможность увеличить длительность пребывания некоторых лекарств в организме, расширить диапазон их антимикробного действия.

В последние годы созданы полусинтетические пенициллины (метициллин, оксациллин), губительные для стафилококков, устойчивых к пенициллину и другим антибиотикам.

Новый антибиотик диклоксациллин обладает прямым бактерицидным эффектом, т. е. способен убить микробную клетку, а не подавлять ее размножение, как действуют многие другие антибиотики. Он уничтожает разные микробы, но сильнее всего его действие на стафилококки. Особым его достоинством является то, что он медленно всасывается и столь же медленно разрушается. Новый антибиотик одинаково хорошо действует при заболеваниях кожи, дыхательных путей, а также при послеродовых и послеоперационных осложнениях.

Семья антибиотиков постоянно расширяется. Появились полиеновые препараты, названные так из-за наличия в молекулах многочисленных двойных связей[7]. Они синтезированы на основе актиномицетов — обширной группы широко распространенных в природе низших растительных организмов — лучистых грибов — и сочетают свойства бактерий и простейших микроскопических грибов.

Тщательные исследования полиенов показали, что они обладают различной химической структурой и биологической активностью. Но отличительное их свойство — способность уничтожать разные виды простейших микроорганизмов, вызывающих различные тяжелые заболевания у человека, например лейнеманиозы, лямблиозы, трипписосмозы и др., а также подавлять рост болезнетворных бактерий.

Выявлено и синтезировано около 300 полиенов и их производных. Правда, еще немногие из них можно купить в аптеке. Ведь всякий новый медицинский препарат проходит длительный испытательный срок в научных лабораториях, клиниках, больницах.

Недавно удалось выделить из образцов некоторых почв совершенно новые виды антиномицетов. Продуктами их жизнедеятельности оказались полнены, обладающие сильным бактерицидным действием. Даже ничтожное их количество задерживало рост болезнетворных грибов. После испытания на лабораторных подопытных животных (белых мышах, хомяках, кроликах) новый препарат выпускается промышленностью в виде таблеток, порошков и мазей.

Изучение, молекулярно-биологических механизмов действия этих антибиотиков показало, что они могут действовать избирательно. Полиены способны связываться с определенными компонентами поверхностных оболочек грибов и некоторых других микроорганизмов. При повреждении оболочки немедленно нарушается обмен веществ и микроб погибает. И еще одна важная особенность была обнаружена у полиенов при клинических испытаниях. Они тормозят рост злокачественных опухолей и в некоторых случаях предотвращают даже развитие метастаза. К тому же они не угнетают кроветворение и усиливают действие других лекарств.

Ученые полагают, что полиены помогут нам бороться и с некоторыми возбудителями вирусных заболеваний. Исследование молекулярного биологического действия полиенов позволяет надеяться, что они окажутся эффективными средствами для борьбы с жировой дистрофией печени и различными нарушениями обмена веществ.

Лучи, поражающие болезнь

В 1895 г. немецкий физик Вильгельм Рентген открыл невидимые лучи, проникающие сквозь различные предметы (металлы, дерево, ткани) и пронизывающие человеческое тело.

Французский физик Анри Беккерель в 1896 г. задумал исследовать одно из соединений урана. Подготовив, как обычно, препарат для опыта, он собирался выставить его на солнце, но погода неожиданно испортилась и опыт пришлось отложить. Дни стали пасмурными, а фотопластинка с урановым препаратом лежала в шкафу. Спустя несколько дней Беккерель решил возобновить опыт, но предварительно проявил фотопластинку. Каково же было его удивление, когда он увидел, что пластинка почернела без освещения урана лучами солнца. Не веря первому впечатлению, ученый десятки раз повторял этот опыт, но каждый раз получал один и тот же результат. Светочувствительный слои фотопластинки чернел и разрушался под действием каких-то невидимых лучей, которые испускал уран.

Какова природа этих лучей? Ответ на этот вопрос спустя два года дали французские физики Мария Склодовская-Кюри и Пьер Кюри. В 1898 г. они после длительных и упорных поисков выделили из урановой руды два новых элемента. Один был назван полонием (в честь Польши — родины Марии Кюри, другой — радием (от латинского слова «радиус» — луч). Оказалось, что это вещество испускает излучение в 2 млн. раз сильнее, чем уран. Свойство урана и радия испускать лучи было названо радиоактивностью. Вскоре радием заинтересовались медики и стали успешно применять его для лечения разных болезней.

В 1933 г. дочь Марии Склодовской-Кюри Ирен и французский физик Фредерик Жолио-Кюри открыли искусственную радиоактивность. Полученный ими радиоактивный алюминий, подобно естественным радиоактивным элементам, излучал различные виды лучей — альфа, бета, гамма.

Эстафета, начатая вторым поколением Кюри, была быстро подхвачена физиками разных стран. Уже через год было получено более 50 искусственных радиоактивных изотопов, сейчас их насчитывается свыше 800. Изотопами (т. е. занимающими одно и то же место) называются разновидности атомов, обладающие одинаковым положительным зарядом в ядре, но имеющие разный атомный вес. Они находят теперь широкое применение в технике, химии, биологии, медицине, сельском хозяйстве.

Искусственные изотопы, подобно природным, имеют определенный период полураспада. Некоторые распадаются в течение долей секунды, другие «живут» несколько тысяч лет. Для того чтобы получить изотопы искусственным путем, нужно «бомбардировать» ядра атомов различными микроснарядами — альфа-частицами, нейтронами, протонами. Общее количество искусственных радиоактивных изотопов в несколько раз больше числа устойчивых изотопов, встречающихся в природе.

Более десятка радиоактивных изотопов стали верными помощниками медицины. Их целительные лучи спасли немало жизней. Есть среди лечебных изотопов всем хорошо знакомые элементы — фосфор (32Р), золото (199Au), иод (131I), серебро (111Ag). Изотопы редких элементов, таких, как цезий (137Cs), иттрий (90Y), применяются для лечения доброкачественных и злокачественных опухолей, различных заболеваний крови, ими пользуются нередко для лечения болезней внутренних органов, глаз, кожи, уха, горла, носа.

Одно из главных преимуществ невидимых лучей — возможность лечения пораженного болезнью органа или опухоли не одним, а несколькими различными изотопами. Радиоактивными изотопами лечат, воздействуя излучением через кожу, слизистые оболочки с помощью трубочек, игл, шариков, тончайшей проволоки, либо вводят внутрь растворы их солей.

Для наружного облучения применяют долгоживущие с длительным периодом полураспада изотопы, испускающие бета- и гамма-лучи. Это позволяет медикам пользоваться ими в течение многих лет, что, несомненно, имеет большое значение для клинической практики.

Поскольку большинство радиоактивных веществ испускает два, а то и три вида лучей, обладающих к тому же разной силой, т. е. величиной энергии, та часто при облучении пользуются металлическими листочками-фильтрами, которые задерживают излучение малой энергии и беспрепятственно пропускают лучи большой энергии. Для гамма-излучения фильтрами служат платиновые, золотые или свинцовые пластинки, а для бета-излучения — пластмассовые и целлулоидные фильтры.

При лечении рака пищевода, мочевого пузыря, прямой кишки, полости носа нередко наряду с наружным облучением во внутренние полости дополнительно вводят препараты радия, кобальта-60, цезия-137 или других изотопов в форме трубочек, бусинок (диаметром 6 мм), микросуспензии или пластобалита (пластмасса с мелкими (диаметром 2 мм) шариками радиоактивного кобальта, покрытыми тонкой золотой пленкой.

Для внутреннего облучения чаще всего пользуются изотопами со смешанным излучением (бета и гамма) или же такими, которые при распаде отщепляют только бета-частицы. Изотопы, испускающие только гамма-лучи, непригодны для внутреннего облучения, так как обладают более сильной проникающей способностью и поэтому оказывают не только местное, но и общее действие.

На чем же основано целительное действие невидимых лучей, излучаемых радиоактивными веществами? Проникая в клетки облучаемых тканей, они ионизируют и возбуждают их атомы и молекулы. При этом изменяется структура молекул, возникают химические реакции, не свойственные обычно клеткам, что и приводит к разрушению больных клеток.

Немало добрых услуг оказали радиоактивные изотопы и в диагностике многих болезней.

Невидимка берет автограф

Радиоактивные изотопы, словно невидимые миниатюрные радиостанции, все время посылают сигналы о своем местонахождении. Испускаемые ими бета- и гамма-лучи можно обнаружить с помощью специальных приборов-счетчиков частиц. Радиоактивное излучение является своеобразной «меткой», поэтому радиоактивные изотопы часто называют мечеными атомами.

Способность меченых атомов испускать частицы позволяет использовать их в качестве «контролеров» в технике и медицине.

Регистрация вылетающих из ядер частиц позволяет контролировать технологические процессы многих производств, следить за сложными превращениями молекул в химических и биологических процессах, за движением и накоплением различных элементов в организме.

В каждом колосе пшеницы, клубне картофеля, кочане капусты присутствуют миллиарды атомов фосфора. Нет такого растения, которое не нуждалось бы в фосфоре. Жизненно необходим он и животным, и человеку. Он находится во многих тканях и клетках нашего организма. Растение получает нужный ему фосфор из почвы, всасывая корнями растворимые соли фосфорной кислоты. В организм человека и животных фосфор попадает с пищей.

Радиоактивный фосфор позволяет проникнуть в одну из сокровенных тайн природы — «увидеть», как атомы фосфора поднимаются по стеблям и движутся по листьям. И сделать это совсем несложно. Раствором двузамещенного фосфата натрия, в составе которого имеются атомы фосфора-32, поливают почву у корней растения. Спустя некоторое время срезают пять-шесть растений с интервалами в 1–2 ч. Затем от различных частей срезанных растений берут по 1 г зеленой массы, высушивают и сжигают. С помощью специального прибора определяют количество содержащегося в золе радиоактивного фосфора и узнают, в каких частях растения накопилось больше фосфора-32.

Легко проследить также за движением радиоактивного фосфора и других радиоактивных изотопов, если снять «радиоавтограф» растения. Для этого достаточно срезанное растение приложить в темноте к фотопластинке. По интенсивности почернения отдельных мест фотопластинки, отображающих контуры тех частей растения, где накапливается радиоактивный фосфор, можно судить о его концентрации.

Примерно так же с помощью меченых атомов ведется наблюдение за движением фосфора в организме подопытных животных. Например, раствор фосфата натрия впрыскивают под кожу или вводят в желудок белым крысам. Через некоторое время животное умерщвляют, из разных частей тела вырезают по 1 г ткани и сжигают; с помощью счетчика определяют концентрацию радиоактивного фосфора в золе. Еще проще и нагляднее можно проследить за накоплением фосфора-32 с помощью радиоавтографа, который получают, прикладывая разрез тела крысы к фотопластинке.

Радиоактивный фосфор очень быстро разносится по всему телу. Уже через несколько минут после введения его можно обнаружить во всех органах и клетках, особенно много его накапливается в почках.

Применение в диагностике меченых атомов — фосфора-32, йода-131, натрия-24 и других основано на том, что они не отличаются от обычных элементов по своим химическим свойствам и также активно участвуют в процессах обмена в организме. Использование йода-131 позволило раскрыть секреты щитовидной железы, в которой, как известно, больше всего накапливается йода. Впервые удалось проследить весь путь этого вещества в желудочно-кишечном тракте и крови в составе иодидов и в самой щитовидной железе — при образовании сложных органических соединений — йодтирозинов и йодтиронинов. Радиоавтографы помогли изучить распределение йода в нормальной и измененной тиреоидной тканях.

Среди жизненно важных для организма химических элементов одно из почетных мест принадлежит железу. Ведь оно входит в состав гемоглобина, который содержится в эритроцитах. Поэтому представляет большой интерес возможность проследить за движением и распределением железа в организме. Опыты с применением радиоактивного железа показали, что этот элемент накапливается в печени и селезенке в виде белкового вещества — ферритина. Так меченые атомы помогают увидеть невидимое.

Рулевые удивительных превращений

Вода, как известно, состоит из водорода и кислорода. Но придется ждать долгие годы ее появления, если смешать эти два газа. Однако достаточно бросить в колбу, наполненную смесью этих газов, микроскопическую крупинку платины, как произойдет бурная реакция (взрыв) и образуется вода. Платина оказалась катализатором: это она заставила газы вступить в реакцию. Катализаторы применяются в промышленности при изготовлении кислот, удобрений, красок, полимеров.

Исследуя работу пищеварительных органов, ученые заметили, что сложные молекулы жиров, углеводов, белков, составляющих нашу пищу, расщепляются на более мелкие части под действием особых веществ — ферментов. Это катализаторы, без которых все превращения в организме шли бы настолько медленно, что жизнь была бы невозможной.

Ферменты в природе встречаются только в живых организмах; этим они отличаются от катализаторов, применяемых в технике. Ферменты — двигатели жизненных процессов, они помогают дышать, строить клетки и ткани. Если в организме не будет ферментов, он погибнет от истощения даже при избытке самых лучших питательных веществ, так как пища без ферментов не будет усваиваться.

При попадании пищи в желудок фермент пепсин ускоряет расщепление белков — разбивает их на полипептиды, а в кишечнике трипсин «рубит» их на еще более мелкие части — аминокислоты. Другие ферменты расщепляют углеводы на отдельные сахара, а жиры — на глицерин и жирные кислоты.

Для нормальной жизнедеятельности людей и животных нужна не только пища, но и воздух. Для дыхания также нужны ферменты.

В человеческом организме находятся тысячи различных ферментов и каждый из них имеет свою «специальность». Одни отщепляют фосфорную кислоту (фосфатазы), другие — водород (дегидрогеназы), третьи доставляют и присоединяют молекулу кислорода к окисляемому веществу (оксидазы).

«Природа ревниво оберегает свои тайны, — писал еще двести с лишним лет назад М. В. Ломоносов, — и ни малейшему в ней не должно приписывать чуду». Многое уже сделано в области изучения строения ферментов, однако ученым предстоит еще большая работа. Раскрыть строение молекул многих еще не исследованных ферментов — одна из серьезных задач современной науки.

Как же устроены ферменты? Одни из них — белки, другие же имеют в составе своих молекул кроме белков микроэлементы: железо, марганец, медь, цинк, серу.

Микроэлементы не всегда входят в состав ферментов, являясь вместе с ними «рулевыми» удивительных превращений. Но многие из них усиливают действие ферментов, т. е. являются их активаторами. Это молибден, ванадий, цинк, кобальт и др.

Однако есть и такие химические соединения, которые ведут себя по-разному: в одних случаях помогают ферментам, в других, наоборот, мешают, т. е. ингибируют процесс. Например, цианиды почти полностью блокируют дыхательный фермент, но повышают активность катепсина и некоторых других ферментов.

В крови человека и животных, в клетках растений имеется фермент, в молекулах которого присутствуют атомы цинка — карбоангидраза. Это вещество ускоряет выделение углекислого газа из легких и тканей, тем самым облегчает дыхание.

Дыхательный фермент содержит железо. Если его не будет, человек или животное погибает от удушья. Так бывает при отравлении цианистым калием, Он соединяется с железом, и человек моментально задыхается.

Фермент, помогающий переносу фосфора в наших тканях, содержит магний. Он не теряет своей чудодейственной силы, если вместо атомов магния в его молекуле появятся марганец или кобальт, железо или кальций. Доказано, что в некоторых ферментах один микроэлемент можно заменять другим.

Многие заболевания вызываются нарушением правильной работы ферментов или недостаточным их количеством в организме, поэтому при некоторых заболеваниях нужно блокировать фермент, т. е. уменьшить его активность с помощью каких-либо химических препаратов. Например, диакарб и гипотиазид угнетают активность карбоангидразы в почках, в связи с чем применяются в качестве мочегонных средств.

При некоторых заболеваниях, наоборот, нужно усилить действие ферментов. При расстройствах пищеварения, например, уже много лет пользуются пепсином и амилазой. Фибринолизин (плазмин), выделяемый из плазмы человеческой крови, применяют для лечения тромбоза коронарных артерий, тромбофлебитов. Не менее известен и фермент гиалуронидаза, увеличивающий проницаемость тканей и применяемый для рассасывания рубцов после ожогов и операций, при склеродермии.

Подобно ферментам, высокой биологической активностью обладают гормоны (от греческого слова «гормао» — побуждаю, возбуждаю). Вырабатываемые живыми клетками, они воздействуют на функции организма. Многие гормоны, как и ферменты, представляют собой соединения белкового происхождения, но в отличие от них не являются катализаторами, хотя и влияют во многих случаях прямо или косвенно на течение биохимических реакций в организме, ускоряемых ферментами.

У высших животных и человека гормоны вырабатываются в клетках эндокринных желез (железы внутренней секреции) — гипофиза, щитовидной железы, надпочечников, половых желез, поджелудочной железы и др. До сих пор до конца не ясен механизм образования гормонов, однако установлено, что при отсутствии в пище достаточного количества необходимых для жизни аминокислот их синтез нарушается.

Разгадка химической структуры гормонов в наш век позволила разработать методы их выделения из органов животных — поджелудочной железы, гипофиза, щитовидной железы. Многие гормоны химики научились получать искусственным путем: в 1954 г. синтезированы вазопрессин и окситоцин.

Большим триумфом созидающей науки явился синтез в 1963 г. одновременно в Англии, ФРГ и Китае столь сложного белкового гормона, как инсулин. Если вазопрессин и окситоцин состоят всего из девяти аминокислот, то молекула инсулина — из 51.

Заслуженным признанием пользуются в медицине кортикостероидные (вырабатываемые корой надпочечников) гормоны — кортизон, альдостерон, кортизол и полученные синтетическим путем преднизолон, дексаметазон, триамсинолон и др. Они используются для лечения самых разнообразных болезней: бронхиальной астмы, тяжелых ожогов, острого ревматического полиартрита, красной волчанки, эритродермии и др.

Широкое применение находят в медицинской практике гормоны и препараты гормонов эндокринной железы организма — гипофиза — АКТГ[8], гонадотропин хорионический, интермедии, а также гормональные препараты щитовидной железы.

Однако эти препараты, названные, глюкокортикоидами, в чрезмерном количестве вредны. У некоторых больных при длительном лечении ими наблюдаются нарушение обмена веществ, ожирение, разрыхление костной ткани, язвы желудка и кишечника, снижение способности сопротивления инфекции, медленное заживление ран.

До сих пор еще, к сожалению, мы не знаем точно, в каких случаях лечение гормонами помогает больному или, наоборот, повредит ему. Врачи лечат, по существу, вслепую, опираясь только на свой лечебный опыт и интуицию. Еще нет четких показателей, которые помогли бы врачу установить необходимую дозу гормонов и продолжительность их употребления.

В последние годы большие надежды медиками всех стран возлагаются на особую группу так называемых клеточных гормонов — простагландинов, способных в эксперименте оказывать мощное воздействие на функции сердечно-сосудистой системы, почек и воспроизводства.

Необыкновенный алфавит

Что полезнее для организма: белок куриного яйца или молоко? свиное сало или подсолнечное масло? говядина или баранина?

В 1880 г. русский ученый Н. И. Лунин решил проверить качество искусственного молока. Он отобрал десять мышей, посадил их в две клетки. Ежедневно в одни и те же часы в клетки ставили блюдечки с отмеренной порцией натурального и искусственного молока.

Спустя месяц мыши, которых кормили искусственным молоком, начали сильно худеть и чахнуть и вскоре погибли. Соседки же их прекрасно себя чувствовали и непрерывно прибавляли в весе.

Н. И. Лунин пришел к выводу, что кроме белков, жиров углеводов и солей в пище есть что-то такое, без чего организм существовать не может. Но что это за вещество?

На этот вопрос ответили ученые спустя только тридцать лет. В 1893 г. молодой голландский врач Эйкман решил покинуть свою родину и поселиться на острове Ява, в городе Батавия. На Яве, в Китае и Японии, во многих странах Южной Америки и Африки люди страдали от страшной болезни — бери-бери, она проникала повсюду, где население питалось главным образом рисом. Эта болезнь вызывала сначала онемение рук, потом ног, судорогу шеи, а часто и летальный исход.

Каких только лекарств не рекомендовал Эйкман больным бери-бери, обращавшимся к нему за помощью. Но все было напрасно. Болезнь упорно не поддавалась лечению. Однажды, проходя мимо курятника, который принадлежал одному из служителей больницы, Эйкман заметил, что несколько кур сидели нахохлившись, шеи их были искривлены судорогой — явный признак страшной болезни.

Много дней посвятил молодой врач наблюдению над курами и в конце концов нашел причину заболевания. Оказалось, что они получали остатки больничных обедов, которые готовили из белого очищенного риса. Но стоило ему примешать к рису немного отрубей (оболочки рисовых зерен), как болезнь немедленно проходила.

Значит, в отрубях содержится какое-то вещество, исцеляющее больных бери-бери. Но какое? Ответ на этот вопрос был получен в начале века. В 1912 г. польскому ученому Функу удалось выделить из рисовых отрубей и дрожжей вещество, которое излечивало от страшной болезни.

Пять лет упорного труда посвятил Функ своим опытам, проводившимся на голубях, которых он кормил одним белым рисом. Бери-бери сводила им лапки и шеи, сковывала движение и убивала. Наконец, тайна рисовых отрубей была раскрыта.

Четыре миллиграмма вещества, полученного ученым, излечивали больного голубя. Оно было названо витамином — веществом жизни (от латинского слова «вита» — жизнь).

Страшная болезнь цинга покрывает тело черными пятнами и ранами, вызывает кровотечение десен, постепенное выпадение зубов, распухание рук и ног.

Ученые доказали, что с цингой можно так же легко справиться, как и с бери-бери, но с помощью других веществ. Вместо рисовых отрубей больным следует давать свежую капусту, картофель, зеленый лук. Хорошим лекарством служат черная смородина, лимоны, помидоры, рябина.

Так же была побеждена пеллагра. В странах, где люди питались почти одной кукурузой, наблюдалось странное заболевание. Оно начиналось с расстройства кишечника, затем на теле проступали красные пятнышки, напоминающие солнечный ожог. Иногда заболевшие пеллагрой сходили с ума. Эта болезнь быстро проходила, если больного кормили печенкой, яйцами, поили молоком или пивными дрожжами.

Сокрытие витаминов уничтожило вспышки эпидемий этих страшных болезней, уносивших в прошлом тысячи жизней. Исчезли из корабельных журналов и дневников моряков записи о мучительной гибели товарищей. Теперь судно, уходя в дальнее плавание, имеет обильный запас овощей, фруктов, насыщенных витаминами.

Известны более двадцати различных витаминов. Они содержатся в различных растениях, входят в состав тела человека и животных. По постановлению международной комиссии по витаминам их решено было обозначить латинскими буквами. Так родился чудесный, алфавит, число букв в котором с каждым годом становится все больше и больше.

В сетчатке глаза находятся витамин А и некоторые близкие к нему по химическому составу органические вещества. Они помогают нам видеть при слабом освещении. Хотя его требуется очень малое количество, организм сам с трудом вырабатывает этот витамин, поэтому человек получает его с пищей. Витамин А находится в молоке, яйцах, некоторых овощах, в частности моркови и помидорах, содержащих каротин. Недаром это вещество называют провитамин А (приставка «про» означает «до»).

Если в организм с продуктами питания поступает больше витамина А, чем ему нужно в данный момент, то излишек откладывается в печени. Когда в пище его недостаточно, то организм использует эти запасы. При недостатке витамина А развивается куриная слепота. Человек ничего не видит при слабом освещении. Одновременно появляется и другое заболевание — ксерофтальмия (по-гречески — сухие глаза) — пересыхают и начинают нарушаться влажные слизистые оболочкй носа и глаз.

Ценный вклад в науку о витаминах внесли советские ученые, которые открыли витамин A2, разработали новый способ производства витамина B1.

В Институте биохимии Академии наук СССР в 1947 г. создан препарат витамин B12, без которого невозможно образование крови. Достаточно одной миллионной доли грамма этого витамина, чтобы защитить организм от возникновения злокачественного малокровия.

Ученые давно изучают витамины, которые содержатся в разных растениях. Исследуя состав дикорастущих плодов — айвы, грецкого ореха, груши, каштана, хурмы, яблони, произрастающих в лесах Крыма, Кавказа, Закавказья, Казахстана, химики обнаружили в них витамины B2, B12, В, С и др.

Оказалось, что у одних и тех же растений, произрастающих в разных районах, количество витаминов неодинаково. Так, в горах, особенно на альпийских лугах, найдено много трав, богатых витаминами, особенно B1, B2 и С. Чем выше над уровнем моря расположены луга, тем больше в травах витаминов. Много витаминов С содержится в крапиве, шпинате, луке. В сосновых и еловых иглах его в пять-восемь раз больше, чем в апельсинах и лимонах. Из одной тонны хвои можно получить 300 г этого витамина. Это примерно годовая потребность в нем двадцати человек. При недостатке в пище витамина С разрушаются зубы, ухудшается свертываемость крови.

Важную роль в нашем организме играет и витамин Д. Подобно кальцию, он входит в состав костей и способствует их правильному развитию. Потому его нередко называют кальциферол (от греческого — несущий кальций). При недостатке его кости ребенка становятся мягкими, легко изгибаются и могут деформироваться.

Витамин Д иногда называют витамином солнечного света. Дело в том, что лучи солнца помогают ему образоваться из твердых спиртов — стеринов, которые содержатся в коже человека. Вот потому детям необходимо как можно больше бывать на солнце. Однако сам организм вырабатывает недостаточно витамина и потому он должен поступать в детский организм с пищей. Особенно это необходимо на Севере, где солнечных лучей мало. Одной тысячной грамма кальциферола — препарата витамина — достаточно, чтобы защитить ребенка от рахита.

Не менее важное значение для нормальной жизнедеятельности организма имеет витамин Е, открытый в тридцатых годах американским ученым Эвансом. Он выделил его из пшеничных зерен и хлопкового масла. Витамин Е, подобно другим витаминам, участвует в процессах усвоения организмом человека и животных белков, жиров и углеводов. Девять десятых всего количества витамина Е находится в жировой ткани различных органов нашего организма.

Взрослому человеку нужно 20–25 мг этого витамина в сутки. В небольших количествах (1,5–4,5 мг на 100 г) он содержится во многих овощах и злаках. Больше всего его в салате — 14 мг на 100 г.

Особенно важен для нашего организма витамин К, который участвует в свертывании крови. Например, при порезе пальца в месте ранения кровь вскоре сворачивается. Образуется корочка, которая, как пробка, препятствует дальнейшему вытеканию крови. Если же витамина К в организме не хватает, то механизм свертывания крови нарушается и даже малейшая царапина может привести к значительной потере крови и даже к смерти.

Однако нет оснований для беспокойства. Витамин К (от немецкого слова «коагулятион» — свертывание) вырабатывается в достаточном количестве в нашем организме бактериями, живущими в кишечнике. Их нет только у новорожденных.

Ученые заметили, что у многих витаминов в молекулах имеются атомы микроэлементов, Так, в составе витамина B12 содержится более 4 % кобальта.

Выяснилось, что микроэлементы оказывают влияние на образование и поведение витаминов. Марганец усиливает действие В1 а фтор — А. Кобальт ускоряет синтез витамина А, а йод, наоборот, тормозит его. Одни микроэлементы принимают участие в создании молекулы витамина С, а другие — в ее разрушении.

В нашей пище не всегда присутствуют в достаточном количестве все нужные для организма витамины. Потому фармацевтическая промышленность производит специальные витаминные концентраты и препараты. Они лечат авитаминоз — болезнь, возникающую при недостатке в организме витаминов, они необходимы для слабого организма, нуждающегося в усиленном питании. Так микроэлементы и витамины помогают нам бороться с болезнями.