Глава II: Портреты вирусов

We use cookies. Read the Privacy and Cookie Policy

Глава II: Портреты вирусов

— Если я правильно понял, вирусы отличаются от микробов тем, что они намного меньше их?

— Да, вирусы настолько малы, что проходят через мельчайшие поры фарфоровых фильтров, которые, как установил еще великий Пастер, отделяют живое от не­живого. Через такие фильтры не проникают даже са­мые маленькие микробы.

— А могут ли вирусы размножаться?

— Ответ на это только один: да, могут, хотя и с обя­зательной оговоркой — если только им удастся попасть внутрь живой клетки.

С момента открытия первых вирусов ученых не пе­реставал занимать вопрос, еще не решенный оконча­тельно и сейчас: какое же место в природе занимают эти мельчайшие создания? Для наглядности можно со­поставить длину некоторых живых существ: кит — 30 метров, мышь — 5 сантиметров, амеба — 50 мик­рон, вирус полиомиелита — 27 — 29 миллимикрон.

Таким образом, вирус полиомиелита примерно в миллиард раз меньше кита! Ничтожные размеры ви­русов позволили некоторым ученым вообще усомниться в их   принадлежности к   живым существам. Однако большинство вирусологов согласиться с этим не могло. Они знали, что вирусы проникают внутрь живых кле­ток, активно там размножаются и производят новое потомство. Именно благодаря этой способности размно­жаться вирусы были отнесены к живым существам.

Еще со школьной скамьи все хорошо усвоили, что микробы размножаются на искусственных питательных средах. Достаточно внести в стерильный флакон с пи­тательным бульоном небольшую капельку взвеси тех или иных микроорганизмов, как уже через несколько часов бульон помутнеет: под микроскопом можно будет обнаружить тысячи и тысячи новых микроорганизмов. А вот вирусы ни в одной, даже самой высококачествен­ной, питательной среде размножаться не могут. Даже если эта среда содержит весь необходимый для жизни набор аминокислот, витаминов, солей. В этом ради­кальное отличие вирусов от микробов. Вирусу нужна полноценная живая клетка, и лишь в ней может он раз­множаться, используя уже готовый обмен веществ клетки.

Микробы способны в течение длительного времени жить или просто сохраняться, чтобы ожить в будущем, в естественных условиях: в земле, в воде, на поверхно­сти любых предметов, например, на коже человека. Для них необходим минимум питательных веществ, а для возбудителя холеры достаточно простой воды в любом водоеме.

Вирусы же вне живых клеток сохраняются только непродолжительное время, лучше на холоде и гораздо хуже в тепле. Если летом на ярком солнечном свету ви­русы погибают очень быстро и даже при комнатной температуре переживают максимум полчаса-час, то на арктическом морозе, под толщами льда и снега они способны сохраняться многие годы.

Факты, подтвержденные тысячами и тысячами науч­ных наблюдений, свидетельствовали, что вне живого организма вирусы не размножаются. Отсутствовали аналогии между вирусными заболеваниями и эпидеми­ями брюшного тифа, вызванными зараженным моло­ком, или вспышками ботулизма, связанными с употреб­лением испорченных консервированных продуктов. Ви­рус должен был обязательно попасть (как правило, достаточно быстро) из живых клеток одного существа в новые чувствительные клетки другого существа.

При любом инфекционном процессе, вызванном ви­русами, о болезни следует думать как о чем-то, что один человек получил от другого человека, одно живот­ное от другого животного. Все симптомы болезни, кото­рые вирус вызывает у зараженного человека, связаны с вовлечением в инфекционный процесс тех или иных групп клеток, чувствительных к вирусу и способных поддержать его размножение.

Вирусы, вызывающие обычную простуду, размно­жаются, как правило, в клетках верхнего дыхательного тракта. В результате начинается насморк и кашель. Вирус полиомиелита попадает в организм человека че­рез рот и размножается исключительно в клетках тон­кого кишечника. Оттуда проникает в нервную систему, где и поражает клетки, ведающие двигательными функ­циями мышц. В результате развивается паралич ног, рук и даже дыхательной мускулатуры.

Есть много болезней, для возбудителей которых ес­тественным хозяином является любое другое животное, но не человек. Наиболее яркий пример — величайшие эпидемии «черной смерти» в средние века, вызванные микробами чумы, которые выживали в течение столе­тий, паразитируя на полевых мышах в Центральной Азии. Когда представлялась возможность, чумные мик­робы поселялись в организме черной домашней крысы проникали в жилища людей и заражали их.

В противоположность микробам для каждого вируса существует свой вполне постоянный и достаточно огра­ниченный круг животных, растений, насекомых и даже микробов, которых он поражает. Заражая живое суще­ство, вирусы размножаются только в клетках опреде­ленных тканей или органов, а не в любом участке ор­ганизма.

В 30-х годах почти одновременно появились в печати две научные статьи, одна из Англии, другая из Совет­ского Союза. К. Смит и А. Смородинцев доказали, что грипп у людей вызывают вирусы, а не микробы, как это считалось раньше. С тех пор прошло более 40 лет. Выделено много вариантов вирусов гриппа, все они до­сконально изучены. Ученые подобрали удобную для изучения лабораторную модель — белую мышь. Уста­новили, что в легких этих животных вирусы гриппа ин­тенсивно размножаются. Однако это происходило, толь­ко когда вирус гриппа вводили мышке в нос. Если же ее пытались заразить инъекцией вирусной суспензии под кожу, внутривенно или в брюшную полость, вирус грип­па не приживлялся и не размножался.

— Если увидеть вирус внутри клетки с помощью микроскопа нельзя, то как это сделать?

— К сожалению, обычный микроскоп, хотя он и уве­личивает предметы более чем в тысячу раз, перед ви­русом бессилен,

— Как же тогда получить «портрет» вируса, раз­глядеть его внутреннее устройство?

— Наука создала для этого электронный микроскоп, ультрацентрифугу и другие сложнейшие приборы.

Уже на первых этапах развития вирусологии ученые столкнулись с непреодолимой трудностью: увидеть ви­русы с помощью микроскопа не удавалось. Изучали ма­териалы, которые наверняка содержали живые вирусы, потому что с их помощью легко заражались лаборатор­ные животные или растения, однако никаких вредонос­ных возбудителей там видно не было. Еще совсем не­давно это считали одним из главных свойств вирусов и их отличий от микроорганизмов.

Большие усилия были затрачены для преодоления невидимости вирусов, делавшей их малодоступными для изучения. Путь к этой победе оказался достаточно долгим.

Трудность заключалась в том, что вирусы имеют ничтожно малые размеры — от 10 до 300 нанометров. Казалось бы, почему не сделать микроскоп с еще более сильными линзами, которые смогли бы увеличить пред­мет не в тысячу, а в 10 тысяч или 50 тысяч раз? Однако все  упиралось в непреодолимость физических законов.

Законы оптики безоговорочно утверждают, что при любом освещении, которое используют в оптическом микроскопе, можно увидеть только объекты с попереч­ником больше длины волны света. У дневного света длина волны составляет 400—700 нанометров, следова­тельно, вирусы невозможно увидеть ни в один обычный микроскоп, каким бы совершенным он ни был.

На помощь вирусологам приходит электронный микроскоп, теорию устройства которого и первые образ­цы создают в конце 30-х годов, перед началом второй мировой войны, В. Зворыкин в США и А. Лебедев в СССР. В нем вместо видимого света используют по­ток электронов, а вместо увеличительных стекол — маг­нитные катушки. Пройдя через изучаемый предмет, тон­кий электрический луч многократно расширяется магнит­ными полями катушек. Это увеличивает изображение в несколько сотен тысяч раз и позволяет увидеть его на специальном флюоресцирующем экране, подобном экра­ну телевизора. Так как длина волны электронного луча равна всего лишь 0,01 ангстрема (ангстрем равен 0,1 нанометра), то есть в 500 тысяч раз меньше, чем у видимого света, с помощью электронного микроскопа можно рассмотреть даже небольшие белковые молекулы.

Электронный микроскоп в его современных модифи­кациях — это весьма точный и сложный механизм, сто­имость которого измеряется десятками тысяч рублей. Несмотря на это, все лаборатории, изучающие структу­ру вирусов, имеют его на вооружении. С помощью электронного микроскопа ученым удается рассмотреть большинство известных вирусов, просвечивая их пучком электронов.

В последние годы изобретен сканирующий электрон­ный микроскоп, принцип работы которого основан на том, что пучок   электронов не проходит через предмет насквозь, а, падая на его поверхность под определенным углом, отражается от нее и после необходимого увели­чения изображения попадает на флюоресцирующий экран. Сканирующий электронный микроскоп позво­ляет увидеть даже объемное изображение вирусов, сде­лать фотографии, портреты вирусов с деталями струк­туры их наружной поверхности.

Исследование морфологии (формы и строения) по­зволило разделить все известные сейчас вирусы на три группы.

Раньше всего были изучены крупные вирусы. Их размер 200—300 нанометров. К таким «великанам» от­носятся вирусы оспы человека и животных, вирус эктромелии белых мышей (это заболевание часто встре­чается в питомниках, где разводят столь необходимых науке лабораторных животных).

Ко второй группе относят вирусы, средняя величина которых от 50 до 150 нанометров. К ним принадлежит большинство вирусов растений, бактериофаги (вирусы, уничтожающие микробов), а также вирусы кори, свин­ки, гриппа. Сюда же относятся возбудители многих за­болеваний верхних дыхательных путей, которые обыч­но называют «простудными», но которые на самом де­ле вызываются многочисленными вирусами.

Третья группа состоит из мельчайших вирусов (по величине они ненамного больше крупных белковых мо­лекул) с размером частиц от 20 до 30 нанометров. В этой группе находятся вирусы полиомиелита, желтой лихорадки, энцефалитов и многие возбудители тропиче­ских лихорадок.

Ученые подсчитали, что если диаметр крупных ви­русов превышает диаметр мелких всего лишь в 30 раз, то разница в их объеме составляет более 25 тысяч раз.

Подавляющая масса вирусных частиц (вирионов), которые поражают человека и животных, имеет форму шара, а у вирусов растений — вытянутый цилиндр. Хо­тя длина цилиндра вируса табачной мозаики достигает 350 нанометров, в оптическом микроскопе он все же не­видим: поперечник цилиндра не превышает 15 наномет­ров, а такие величины в оптическом микроскопе раз­глядеть нельзя.

Исследования знаменитого теперь американского биохимика, лауреата Нобелевской премии У. Стенли на­чались в 1935 году и пролили затем свет на состав ви­русов. Из сока растений, пораженных вирусом табачной мозаики, Стенли выделил высокомолекулярные соеди­нения. После тщательной очистки выяснилось, что это сложная комбинация нуклеиновой кислоты и белка. Это вещество получило название нуклеопротеин. Оно могло даже заражать здоровые растения, вызывая болезнь — табачную мозаику.

Однако самые существенные различия между виру­сами и микробами обнаружили, когда вирусы разобра­ли, если можно так выразиться, на составные части. Наука создала за последние годы много новых фермен­тов и реактивов, чтобы с более чем ювелирной точно­стью отделить друг от друга различные компоненты те­ла вируса или микробной клетки, получить их в чистом виде и достаточно точно изучить. Трудно даже вообра­зить себе эту точность, при которой ученые оперируют величинами, измеряемыми миллионными долями мик­рона!

Вирусы под различными углами просвечивали рент­геновскими лучами, измеряли величину электромагнит­ных колебаний их атомов, разделяли вирусные белки и нуклеиновые кислоты, определяли последовательность аминокислот в белке. Анализ всех фактов проводили с помощью сложнейших электронно-вычислительных машин за считанные дни, а не за долгие годы, как это делалось еще совсем недавно. И вот в результате тако­го скрупулезного исследования вирусов удалось устано­вить совершенно неожиданный факт: у них нет никако­го сходства с клеточной организацией, типичной для всех существующих на земле организмов!

В центре каждого вириона, образуя его сердцевину, лежит нуклеиновая кислота. Снаружи располагаются белковые молекулы, образующие своего рода защитное покрытие, так называемый «чехол». Они состоят из 20 хорошо известных аминокислот, из которых сотканы белковые  молекулы всех живущих на земле существ.

Чтобы определить вес целой вирусной частицы или отдельных ее компонентов, используют ультрацентри­фугу. Отличается она от обычной центрифуги тем, что здесь развивается скорость вращения порядка 100 ты­сяч оборотов в минуту и создается сила тяжести, превы­шающая земное притяжение в несколько сот ты­сяч раз.

Если в ультрацентрифугу поместить   пробирку,   со­держащую концентрированный раствор сахара или ка­кой-либо соли, а поверх него — суспензию вируса, то при определенных скоростях вращения вирус будет оседать, двигаться по направлению к дну пробирки, как бы продавливаясь через плотный слой лежащего ниже раствора. По глубине погружения вируса в плот­ный раствор сахара или соли можно вычислить моле­кулярный вес частицы или   отдельных ее компонентов.

За единицу измерения приняли дальтон — вес само­го маленького атома в природе — атома водорода. Ока­залось, что у мелкого вируса полиомиелита вес вирус­ной РНК, являющейся геномом, хранителем наследствен­ной информации вируса, не превышает 1—2 миллионов дальтон, у крупного вируса оспы достигает 200 миллио­нов. А средний вес генома бактериальной клетки до­стигает  1—10 биллионов дальтон.

Аминокислоты вирусного чехла соединены друг с другом последовательно в различных сочетаниях и образуют линейные цепочечные структуры (полипепти­ды). Их молекулярный вес варьирует от нескольких ты­сяч до сотен тысяч дальтон. Так, наружный слой вируса табачной мозаики образует 2200 «кирпичиков» белка совершенно идентичного состава, которые группируются в правильном порядке.

Структура различных вирусов отличается большей или меньшей степенью сложности. Если наиболее про­стые мелкие вирусы состоят только из обособленной мо­лекулы РНК и белка, то более крупные обладают и наружной оболочкой, своего рода «упаковочным конвер­том», в состав которого входят не только белки, но угле­воды и липиды (жировые вещества).

Наиболее сложно устроены бактериофаги («пожира­тели бактерий»). По форме они напоминают гимнасти­ческую булаву. В их шаровидной головке помещена нуклеиновая кислота. Длинный отросток булавы пред­ставляет собой полый чехол, построенный из молекул белка. С помощью этого отростка бактериофаг прикреп­ляется к оболочке или к жгутикам бактерий, внедряет конец отростка в цитоплазму микроба и впрыскивает, как через шприц, свою нуклеиновую кислоту.

Белки, входящие в состав любого вируса, отличают­ся по структуре от белков поражаемых клеток. Каждый белок является антигеном, то есть веществом, способ­ным вызвать образование антител. Разница в строении молекул вирусного белка и клеточного ведет к тому, что при введении животному эти белки вызывают обра­зование совершенно разных антител, реагирующих толь­ко со своими антигенами. Антитела против клеточных белков соединяются только с ними и не соединяются с вирусами. Антитела против вируса не реагируют с белками клетки. Именно благодаря таким различиям специальные лабораторные приемы позволяют распо­знать   присутствие вируса внутри зараженной клетки.

— Если у вирусов есть только нуклеиновая кислота и немного защитного белка, то как же они размно­жаются?

— В этом главная загадка вирусов. Полное отсут­ствие ферментов, необходимых для синтеза белков и нуклеиновых кислот! А потомство воспроизводится с не­обычайной быстротой.

— Как же совместить несовместимое?

— Чтобы понять, нужно увидеть. Вирусологи затра­тили на это 15 лет.

Известно, что в клетках растений или животных на­следственные функции несет дезоксирибонуклеиновая кислота (ДНК), а рибонуклеиновые кислоты (РНК) выполняют чисто вспомогательные. Однако у многих вирусов ДНК вообще отсутствует, геном состоит из мо­лекулы РНК, причем не только в однонитевой, но и в двунитевой форме, чего нет у других живых существ на земле.

Простота организации вируса подтверждается не­большим количеством генетического вещества, а следо­вательно, и заключенного в нем объема генетической информации по сравнению с клеткой-хозяином, в кото­рой вирус размножается и которую подчиняет своим по­требностям.

Создается явное противоречие: вирус, имея объем ге­нетической информации, в тысячу раз меньший, чем сложно организованная клетка, никогда не оказывает­ся в подчиненном положении, а, наоборот, почти всегда побеждает. Это противоречит всем известным канонам. Понять это можно, лишь предположив, что у вирусов есть какие-то решающие преимущества перед клетка­ми, позволяющие легко их завоевывать и обращать в своеобразное рабство.

До открытия мира вирусов длительные наблюдения за различными микробами и любыми одноклеточными организмами позволили установить, что все они раз­множаются совершенно одинаково: путем непрерывно­го, обычно прямого деления, когда из одной клетки об­разуются две, из них — четыре и так далее.

В течение многих десятилетий процесс размножения вирусов объясняли по аналогии с привычным и так хорошо изученным размножением у бактерий. Непонят­ной оставалась лишь огромная быстрота, с которой он идет.

Если бы число вирионов увеличивалось даже с наи­большей скоростью, доступной для бактериальной клет­ки, то есть три деления в час, потомство вируса проде­лало бы за три часа девять последовательных делений и составило бы всего тысячу частиц. Однако факты не укладывались в эти расчеты, и приходилось допустить, что каждое деление вируса на две дочерние части­цы происходит не через 20 минут, а несоизмеримо бы­стрее.

Первым, кто подсчитал, сколько же вирусных частиц образуется в ходе размножения, был английский виру­солог К. Эндрюс. Заражая бактериофагами культуру бактерий, он установил, что одна частица бактериофага размножается в 100 тысяч раз быстрее бактерии, давая уже через три часа потомство в 100 миллионов частиц. Какого-либо объяснения для столь небывало быстрого темпа размножения вирусов никто в то время предло­жить не мог.

Решением этого интересного вопроса занялись мно­гие ведущие вирусологи мира. Вначале установили, что вирион не разделяется на две дочерние частицы, как это происходит со всеми известными на земле клеточ­ными формами. Далее выяснилось, что вирусы вообще не делятся и что у них есть свой особый механизм раз­множения, отличный от всех остальных живых су­ществ. Оказалось, что каждая вирусная частица сра­зу же «рождает» потомство в количестве от ста до ты­сячи и более новых вирионов.

Во всех странах мира ученые в одиночку и целыми коллективами вкладывали свою лепту в познание неви­димых процессов, происходивших внутри клеток бук­вально на молекулярном уровне. В итоге этих обшир­ных исследований удалось составить достаточно четкую схему последовательных этапов размножения, или, как чаще говорят, репродукции вирусов.

Все начинается с избирательной адсорбции вируса на особых рецепторах, расположенных на поверхности клеток. После этого некоторые вирусы, обладающие специальным ферментом проникновения, способным рас­творить клеточную оболочку (например, нейраминида­за вируса гриппа), внедряются внутрь, другие же клет­ка поглощает сама, приняв их за вполне съедобный белок.

Проникнув внутрь клетки, вирус исчезает в прямом смысле этого слова, и никакими самыми чувствительны­ми методами не удается обнаружить в клетке ни цель­ной частицы, ни отдельных ее компонентов. Ученые даже назвали эту стадию размножения вируса эклипсом, что соответствует русскому слову «затмение».

Разгадка этого парадокса получена совсем недавно. Оказалось, что в стадии эклипса вирусная частица рас­падается на белок и нуклеиновую кислоту. Такое «раз­девание» вируса, как это ни странно, производит сама клетка с помощью ферментов. Они   реагируют на про­никший вирус как на кусочек белковой пищи и ста­раются его растворить и переварить.

Все основные события последующих часов, опреде­ляющие сущность процесса размножения вирусов, связаны не с белковым компонентом вируса, а с нуклеи­новой кислотой. Именно она определяет весь ход даль­нейшего размножения вирусов.

В нормальных условиях жизнь клетки регулируется деятельностью ее собственных нуклеиновых кислот, ру­ководящих синтезом клеточных белков и других хими­ческих соединений. В хромосомах клетки содержатся многочисленные молекулы ДНК. Длинная молекула этой кислоты по своему строению несколько похожа на велосипедную цепь, закрученную в пространстве в виде спирали. Наследственная информация клетки о структуре всех без исключения белков, входящих в ее состав, записана в огромной полимерной нити, в двой­ной спирали молекулы ДНК. Она хранится в клеточном ядре.

Каждое звено цепочки ДНК — своеобразная ячейка, группа из трех генов, которая называется «оперон», так как она производит операцию выдачи заложенной в ней информации. Ведь каждый ген служит носителем ка­кой-то определенной наследственной информации. В од­ном из генов содержится информация о структуре и по­следовательности подбора молекулярных кирпичиков для синтеза строго определенной белковой молекулы, или молекулы фермента, или молекулы новой нуклеи­новой кислоты. Два других играют роли включателя и выключателя процесса считывания информации, зало­женной  в  первом  гене.

В нужный момент оперон получает импульс, посту­пивший от включающего гена-оператора. Происходит выдача информации, заложенной в ячейке и необходи­мой для синтеза новых молекул белка или нуклеиновой кислоты. С участков ДНК снимаются копии, чертежи поменьше. Это молекулы информационных РНК (иРНК). Они двигаются из ядра в цитоплазму, где на­ходятся рибосомы — своеобразные станки по производ­ству белка. В каждой клетке много тысяч рибосом. Диа­метры каждой 200—300 ангстрем, а молекулярный вес 2—5 миллионов дальтон.

Из нескольких рибосом информационная РНК. фор­мирует так называемый полисомный комплекс, своеоб­разную матрицу, на которой, как в типографии с на­бранного шрифта, начинается отпечатывание (реплика­ция) новых копий белковых молекул. Транспортные РНК (тРНК) подвозят к рибосоме строительные бло­ки — аминокислоты. Находящиеся на рибосомах иРНК (они крупнее тРНК) служат шаблоном, определяющим последовательность стыковки друг за другом каждой из привезенных аминокислот. Каждая тРНК присоеди­няется к определенному участку иРНК. Так вдоль всей молекулы иРНК в соответствии с заложенным в ней ко­дом выстраиваются молекулы тРНК с аминокислотами. В рибосоме эти аминокислотные блоки сшиваются друг с другом, их цепочка полимеризуется в молекулу белка.

Одна молекула белка собирается на рибосоме за 20—30 секунд. Когда синтезируется достаточное количе­ство таких молекул, в процесс вступает ген-регулятор. Он дает сигнал, участок ДНК, ведающий синтезом одно­го из белков, выключается и не функционирует до тех пор, пока в клетке опять не возникнет потребность в этом белке.

Следовательно, в хромосоме здоровой клетки все участки ДНК работают по принципу «включено» — «выключено», непрестанно регулируя количество и на­бор синтезируемых белков, необходимых клетке в каж­дый момент ее жизнедеятельности. Основа всех нор­мальных процессов клеточного синтеза заключается в том, что они контролируются и направляются инфор­мацией, передаваемой как бы по конвейеру от ядерной ДНК к исполнительной (информационной) РНК клеток.

Но вот в клетку проникла вирусная нуклеиновая кислота. Она сразу же берет весь основной обмен клет­ки, все процессы синтеза под свой контроль.

Враг захватил завод, который в мирное время де­лал тракторы. Используя те же станки, оборудование и сырьевые ресурсы, враги заставляют рабочих завода де­лать танки для своей армии, чтобы захватывать все новые и новые города. Внутри зараженной клетки про­исходит, по существу, аналогичный процесс.

Вирусная нуклеиновая кислота ведет себя в клетке как агрессор. Информация, закодированная в вирусной РНК (или ДНК), служит для клетки более обязатель­ным и строгим «приказом», чем усилия собственных нуклеиновых кислот сохранять на каком-то уровне нор­мальную физиологическую деятельность организма. В течение многих часов, а иногда и дней после зараженная вирусная нуклеиновая кислота направляет все строительные запасы захваченной клетки на создание сотен и тысяч новых вирусных частиц.

Клетка превращается в фабрику по сборке своих убийц. Именно убийц, потому что вирусное потомство стремится выйти наружу и разрывает или расплавляет при этом клеточную оболочку, наступает гибель клет­ки-хозяина.

Вирус использует строительные ресурсы и фермент­ные системы клетки для своих нужд, а затем уничто­жает ее, чтобы на следующем этапе инфекции зара­зить, а следовательно, и уничтожить сотни и даже ты­сячи новых клеток.

После заражения клеток различными вирусами в первую очередь формируется особый белок (ученые на­звали его белок-ингибитор), подавляющий нормальное функционирование клеточных ДНК. Он прекращает передачу информации, необходимой для нормальных клеточных синтетических процессов.

Примерно в это же время формируется фермент, разрывающий полисомные комплексы, на которых шла сборка клеточных белков. Теперь уже клетка собствен­ных белков не производит. Кроме того, и это является самым важным, синтезируется фермент полимераза (другое название — синтетаза), необходимый для сня­тия копий с внедрившейся в клетку вирусной РНК.

Для дальнейшей судьбы вируса именно стадия обра­зования полимеразы является жизненно необходимой, потому что копии РНК будут использованы в качестве начинки при сборке новых вирионов. Синтезированные в клетке специфические вирусные РНК служат также матрицами, на которых строятся белковые части вирио­на — его капсомеры.

Предполагают, что молекулы нуклеиновой кислоты для будущих вирусных частиц строятся в ядре заражен­ной клетки, а белковые футляры — в цитоплазме. Затем происходит формирование «полного», то есть зрелого, вируса. На внутренней поверхности клеточной оболочки завершается объединение вирусной нуклеиновой кисло­ты (РНК или ДНК) с белковым чехлом. Этот процесс идет одновременно во многих участках и заканчивается созреванием   большой   массы высокозаразных частиц.

Иногда в клетках вырабатывается больше молекул одного биополимера, чем другого. Если в зараженной клетке сформировался избыток вирусного белка, его мо­лекулы образуют оболочку вируса, не начиненную РНК (которой для этого просто не хватило). Эти структуры, называемые «неполным» вирусом, выходят из клетки, и их можно увидеть в электронном микроско­пе. Они похожи на бублик с дыркой посредине. Есте­ственно, что такой «неполный» вирус не обладает инфек­ционными свойствами, которые полностью зависят толь­ко от РНК.

— Итак, инфекционные свойства вируса связаны с его нуклеиновой кислотой.

— Да, и это было доказано в нескольких крупней­ших лабораториях мира.

— А какова же роль белка?

— Он защищает нуклеиновую кислоту от внешних воздействий и помогает вирусу внедриться в клетку.

Четверть века назад, в 1952 году, известнейшими американскими биохимиками Э. Херши и М. Чейз при изучении бактериофагов впервые было показано, что нуклеиновые кислоты играют главную роль в репродук­ции вирусов. В отличие от всех остальных вирусов бак­териофаги не проникают в клетку своего хозяина — мик­роба, а лишь прикрепляются к его оболочке. Наблюдая с помощью электронного микроскопа за различными стадиями взаимодействия между бактериофагами и бак­териями, ученым удалось увидеть, как фаг вводит внутрь микроба свою нуклеиновую кислоту. Весь белковый че­хол, которым бактериофаг прикрепился к оболочке мик­роба, остается снаружи. Фотографии, полученные уче­ными, обошли весь мир, опровергая прежние утвер­ждения о ведущей роли белка в передаче наследствен­ной информации.

Но ведь все, что касается бактериофага, не обяза­тельно должно повторяться при репродукции других, устроенных по-иному вирусов, утверждали скептики, у которых в голове не укладывалось, что из одной молеку­лы вирусной РНК в клетке может одновременно воз­никнуть тысяча и более новых вирусов. И вот в 1956 го­ду X. Френкель-Конрад в США и одновременно с ним А. Гирер и Г. Шрамм в ФРГ сделали важное открытие, за которое они позднее получили Нобелевскую премию. Разрушив белковый компонент вирусной частицы табач­ной мозаики крепкой карболовой кислотой (фено­лом), они выделили РНК и очистили ее. Полученная РНК не содержала даже следов белка. Тем не менее вве­дение ее в листья здоровых растений вызвало развитие типичной  мозаичной  болезни.

Сам по себе факт выделения заразного компонента вируса (его нуклеиновой кислоты) с помощью карболки, широко используемой в практической дезинфекции для разрушения самых устойчивых микроорганизмов, казался чем-то невероятным. Более того, нуклеиновую кислоту, полученную после сжигания фенолом белковых молекул вириона, осаждали и длительно хранили в чис­том спирте, который также является сильнейшим дез­инфицирующим средством. Несмотря на эти вредней­шие воздействия, совершенно несовместимые с существовавшими в медицине понятиями о жизни, ви­русная нуклеиновая кислота отлично сохраняла свою заразительность для клеток восприимчивых растений та­бака.

В последние годы из многих мелких вирусов живот­ных и человека (полиомиелит, клещевой энцефалит, ви­русы, вызывающие злокачественные перерождения тка­ней) также удалось выделить рибонуклеиновые кисло­ты, обладавшие заразными свойствами. Такие вирусные РНК стали называть инфекционными, посколь­ку они вызывали развитие болезни в организме воспри­имчивых животных или же в чувствительных культурах ткани без участия вирусных частиц или их белка. При­чем после каждого такого искусственного заражения с помощью инфекционной РНК в клетках исследуемого объекта появлялись вполне полноценные вирусные час­тицы.

Первоначально открытие инфекционных нуклеиновых кислот было встречено с недоверием. Многие, даже очень солидные, ученые-биологи думали, что инфекцион­ный процесс вызывают не сами нуклеиновые кислоты, а сохранившиеся в растворе частицы живого вируса или примеси белка. Однако такие сомнения были быстро опровергнуты. X. Френкель-Конрад использовал самые чувствительные методы химического анализа, способ­ные обнаружить даже отдельные белковые молекулы. Все пробы на белок были отрицательными: препараты содержали только нуклеиновую кислоту.

Теперь следовало доказать, что именно она несет в себе заразительность для здоровых растений. Для это­го А. Гирер и Г. Шрамм провели специальные контроль­ные исследования, которые показали, что добавление фермента рибонуклеазы к препарату вирусной РНК полностью разрушало его инфекционные свойства. Это подтвердило, что вся заразительность заключена в об­следуемой РНК, так как рнбонуклеаза совершенно без­вредна для вирусной частицы.

Исследователи установили также, что активность ви­русных нуклеиновых кислот не изменялась и после до­бавления иммунной сыворотки. Если бы после обработ­ки фенолом в препарате вирусной РНК сохранились да­же отдельные неубитые вирусные частицы, иммунная сыворотка подавила бы их биологическую активность.

Чтобы окончательно убедиться в своей правоте, ис­следователи провели дополнительные испытания. Они установили, что препараты очищенной вирусной РНК крайне нестойки и быстро разрушаются даже при не­продолжительном хранении в термостате или в леднике.

Напротив, частицы исходного вируса табачной мозаики сохраняли высокую устойчивость даже после продол­жительного хранения в тех же условиях. Поэтому, счи­тали ученые, вирусные частицы было бы легко обнару­жить через несколько дней после хранения на леднике, когда нежные нуклеиновые кислоты полностью разру­шатся. Однако все попытки оказались безуспешными: с гибелью РНК исчезала инфекционная активность очи­щенного препарата. Так было окончательно доказано, что именно выделенная из вируса РНК, а не остаточ­ный вирус, вызывала заражение листьев растений.

Очищенные вирусные нуклеиновые кислоты способ­ны заражать даже ткани, которые в естественных усло­виях полностью невосприимчивы, то есть устойчивы, не­чувствительны к цельному вирусу. Например, вирус по­лиомиелита прекрасно размножается в тканевых куль­турах, приготовленных из клеток человека. Ведь как раз у человека этот вирус вызывает поражение спин­ного мозга, параличи и смерть. В то же время этот ви­рус не способен заразить тканевые культуры, приготов­ленные из клеток курицы, так же как он не может за­разить и курицу.

Выделенную из вируса полиомиелита инфекционную РНК легко удалось ввести в куриные клетки, после чего в них произошло формирование сотен полноценных зре­лых частиц вируса. Но в невосприимчивой ткани вирус­ная инфекция на этом и прекращалась. Новые вирионы, которые могли бы оказаться высокозаразными для чув­ствительных тканей, были часто не способны даже вый­ти из нечувствительных к ним клеток.

Однако с помощью электронного микроскопа ученым удалось увидеть вирусные частицы внутри клеток и вы­делить вирус из клеток, разрушив их ультразвуком. Та­кой вирус прекрасно размножался, если его переносили в другую, восприимчивую ткань.

Если учесть полную искусственность опытов с очи­щенной вирусной нуклеиновой кислотой, с помощью ко­торой ученые старались заразить растения, животных или тканевые культуры, становится понятным, почему активность инфекционной вирусной РНК несравненно ниже активности исходных частиц. Для заражения куль­туры ткани нужно взять РНК, выделенную из 10^6— 10^8 вирусных частиц или всего 4—10 вирионов. Разница огромная, и величины несопоставимые.

В естественных условиях «голая» РНК никогда не проникает в клетки извне, через клеточную оболочку. Нуклеиновые кислоты всегда попадают сюда только в составе цельной вирусной частицы, которая освобож­дает вирусную РНК (или ДНК) лишь внутри заражен­ной клетки. Хотя вирусные нуклеиновые кислоты и игра­ют ведущую роль в размножении вирусов, однако они не обладают способностью самостоятельно переходить от клетки к клетке.

Некоторые вирусологи ошибочно рассматривают про­цесс размножения вируса как самостоятельную работу клетки, которая «продуцирует вирусные частицы». В действительности от начала и до конца этот процесс — результат жизнедеятельности вируса. Он осуществляет основную функцию паразита — репродукцию, то есть воспроизводство, новых потомков. Абсолютно чуждые клетке молекулы вирусных нуклеиновых кислот и белка воссоздаются в виде сотен новых копий в ее ядре и в цитоплазме под командой вируса, но за счет строи­тельных материалов и синтетических систем клетки.

— Как же организм животного или человека защи­щается от вируса, с которым никогда раньше не встре­чался?

— Первый этап, как правило, заканчивается ги­белью зараженных клеток. В результате образуется не­сколько тысяч новых вирусов, затем миллион, милли­ард, а потом организм должен погибнуть.

— Но в реальных условиях этого не происходит. За­болевший обычно выздоравливает.

— Действительно, даже при тяжелейших вирусных инфекциях, как оспа или клещевой энцефалит, поги­бают не все заразившиеся люди, а такие болезни, как свинка, корь, грипп, для большинства оканчиваются благополучно.

Обороняясь от возбудителей заразных болезней, ор­ганизм вырабатывает, как известно, высокоэффективные защитные вещества — антитела. Против каждого воз­будителя, будь то бактерия или вирус, образуются свои антитела. Они соединяются только со «своим» возбуди­телем и нейтрализуют его активность, совершенно не действуя на все остальные.

Каждому этапу развития любой науки, в том числе и медицины, соответствует определенный уровень зна­ний. Поэтому многие первоначальные положения, своего рода аксиомы вирусологии основывались на знаниях, полученных ранее микробиологами, изучавшими проти­вомикробный иммунитет. Вот почему вирусологи до­вольно долго считали, что выздоровление обеспечивает­ся только специфическим иммунитетом, его антителами, которые образуются в ответ на проникший в организм и размножающийся там вирус. Однако существовало определенное противоречие, на которое долго старались не обращать внимания, хотя оно буквально бросалось в глаза.

Совершенно непонятным оказывался такой хорошо известный факт: антитела образуются и поступают в кровь через несколько дней после заражения. Именно такой срок требуется организму, чтобы ответить на аг­рессию и выработать необходимые количества защитных антител, способных связать вирус. Но, ведь зная необы­чайно высокий темп репродукции вируса в зараженных клетках, легко можно подсчитать, что в первые два-три дня болезни должны образовываться неисчислимые пол­чища новых вирусов. Следовательно, антитела просто­напросто опоздают и не смогут нейтрализовать ин­фекцию!

Кроме того, ученые показали, что антитела действу­ют, только когда вирус находится вне клетки: в крови, в лимфе, — и не способны проникать внутрь клеток, за­раженных вирусом, хотя и препятствуют внедрению ви­русов в чувствительную ткань.

Очевидно, есть какие-то еще неизвестные способы защиты, которые именно в первые часы после заражения должны, во-первых, ограничить размножение вируса внутри клетки, а затем и воспрепятствовать заражению новых клеток, как бы связать вирус по рукам и ногам до подхода основной армии защиты — антител.

Можно думать, что уже на самых ранних этапах эво­люции живых существ на поверхности нашей планеты началась неравная борьба между клеточными организ­мами и мельчайшими их врагами — вирусами. Учиты­вая необычайно быстрый темп размножения вируса, та­кая борьба должна была бы окончиться их несомненной победой над более сложно организованными многокле­точными организмами. Чтобы как-то защитить себя от бурно размножающихся противников, позвоночные жи­вотные многие и многие тысячи лет назад выработали универсальный механизм защиты от вирусной агрессии. Эта дополнительная (но против вирусной инфекции, может быть, и основная) защита проявляется и действу­ет на уровне клеток. Она резко подавляет темп размно­жения вирусов, замедляет скорость развития инфекци­онного процесса.

В середине 30-х годов два американских исследова­теля, Г. Финдлей и Ф. Маккаллум, проводили опыты на обезьянах, изучая разновидности вирусов желтой лихо­радки, вызывавших или не дававших развития энцефа­литов у этих животных. Вирусы нередко были причиной гибели людей, живших в Африке, и особенно приезжав­ших на Африканский континент европейцев: путеше­ственников, моряков и поселенцев. Обезьяны, так же как и люди, погибали от этих вирусов, причем нередко раз­вивались тяжелейшие параличи.

Однажды, не располагая достаточным числом обезь­ян, ученые заразили смертельным вирусом животных, которым несколько дней назад была введена ослаблен­ная разновидность вируса желтой лихорадки. Произо­шло непонятное и поистине чудесное явление: обезьяны не только не погибли, но даже не заболели. Опыты сле­довали за опытами, и результаты, повторяя друг друга, позволяли сделать вывод, что найдена совершенно но­вая возможность спасти животных от смертельных ви­русов. Для этого нужно ввести им незадолго до зараже­ния другой, малоопасный вирус, который даже может быть вирусом совершенно иного вида.

Таким образом, было сделано важнейшее открытие, а в медицине появился новый термин «интерференция» вирусов, происшедший от английского слова «помеха», «препятствие».

С самого начала этих работ ученым было ясно, что природа интерференции связана вовсе не с иммуните­том, а с каким-то «неспецифическим» механизмом. Од­нако в течение долгих 20 лет ученые объясняли защит­ный эффект простой конкуренцией между двумя сопер­никами. Думали, что первый по порядку «несмертельный» вирус отнимает у второго «злокачественного» виру­са питательные ресурсы зараженного организма, а это подтверждалось плохим размножением смертельного ви­руса, введенного во вторую очередь.

В 1957 году английский ученый А. Айзекс и его мо­лодая практикантка доктор Д. Линденман показали, что причина интерференции совсем другая. Исследователи изучали поглощение вируса клетками из окружающей питательной среды и ожидали увидеть снижение интер­ферирующей силы среды. Однако произошло обратное. Но ученые, к счастью, не прошли мимо этого непонят­ного поначалу факта, а стали искать вызвавшую его причину. Они установили, что если внести в культуру ткани инактивированный теплом вирус гриппа, то зара­женные клетки начинают вырабатывать какое-то белко­вое вещество и выделять его в окружающую среду. В незараженных клетках такого белка обнаружить не удалось.

Айзекс назвал открытый им белок интерфероном и этим обессмертил свое имя.

Интерферон обладал чудесными свойствами идеаль­ного противовирусного лекарства, и его открытие яви­лось крупным событием в биологии и медицине. Прав­да, вначале оно было встречено с недоверием, но уже через два-три года вызвало широкий поток исследований во всех странах мира. Ученые пытались выяснить при­роду интерферона, понять механизм его действия на ви­русы и постараться использовать для борьбы с вирус­ными болезнями у людей и животных.

Молекулы интерферона наделены весьма важными и интересными свойствами: они полностью лишены како­го-либо побочного действия на организм. Защита от ви­русов наблюдается в клетках только того вида живот­ных, которые выработали интерферон. В отличие от ан­тител он подавляет размножение практически всех из­вестных вирусов. Активность самых лучших антибиоти­ков (стрептомицина, пенициллина, эритромицина и дру­гих) распространяется на многие возбудители болезней бактериальной природы, но, к сожалению, не на ви­русы.

Как теперь установлено, в первые дни после зараже­ния от смертельного воздействия любого вируса орга­низм защищает именно интерферон. Это очень важно в тех случаях, когда организм встречается с каким-либо вирусом впервые в жизни и не имеет к нему антител. Интерферон играет роль как бы пограничной заставы, которая принимает на себя удар противника, пока не подтянутся основные защитные войска.

Особенно это ценно при таких инфекциях, как грипп и простудные заболевания, которые длятся лишь три-пять дней. Тогда именно интерферон способствует вы­здоровлению, поскольку антитела образуются поздно, воздействовать на вирус не успевают и играют свою за­щитную роль только при повторной встрече организма с тем же вирусом.

Вскоре после того, как вирус прикрепится к поверх­ности клеток, они «распознают» в его лице не только полезный питательный белок, но и своего смертельного врага. Вот это-то раннее «распознавание» и позволяет организму достаточно быстро подготовить эффективную оборону, чтобы подавить вирусную инфекцию или хотя бы ограничить ее уже в первые часы после начала бо­лезни.

Исследование тончайших процессов, происходящих на молекулярном уровне внутри живых клеток, потре­бовало довольно длительного времени. И если интер­ферон был открыт в Англии, то объяснить, как он обра­зуется, удалось в Америке.

Вирусолог С. Барон из Института аллергии и инфек­ционных болезней, расположенного в городе Бетесда,

близ Вашингтона, много лет посвятил изучению всего двух вопросов: почему в зараженных вирусами клетках образуется интерферон и как это происходит? Вдумай­тесь! Всего два вопроса, но каких важных! Если на них ответить, откроется путь к пониманию главной задачи: способу борьбы с любыми вирусными инфекциями.

Ученому удалось установить, что, как только вирус проникает в цитоплазму клетки и начинает там «разде­ваться», сбрасывая белковый чехол и выделяя нуклеи­новую кислоту, клетка воспринимает эти действия за сигнал тревоги, оповещающий о вторжении смертельно­го врага, против которого немедленно надо готовить ак­тивнейшее оружие.

С. Барон доказал также, что начало синтеза интер­ферона совпадает с периодом, когда в зараженной клет­ке вирусная РНК становится матрицей, с которой печа­таются новые РНК. Формирующиеся в ходе этого про­цесса двунитевые РНК и служат стимулом для образо­вания интерферона. А происходит это потому, что в здо­ровых клетках никогда не бывает двунитевых РНК, а только однонитевые. Двунитевая форма РНК чужерод­на для клетки, а это как раз и необходимо, чтобы подать сигнал опасности. Таков был ответ на вопрос «почему».

Ответ на второй вопрос — «как» — потребовал гораз­до больше времени. Оказалось, что, когда клетка получа­ет сигнал опасности, немедленно включается специаль­ный ген-оператор. Начинается синтез информационной РНК, а затем на ее матрице в полисомах клетки проис­ходит сборка относительно простых и легких по весу бел­ковых молекул, которые мы называем интерфероном. В 1974 году ученые установили, что ДНК, отвечающие за образование интерферона, расположены у человека только в хромосомах № 2 и 5.

Период образования многих и многих тысяч молекул интерферона в зараженной клетке обычно занимает от двух до шести часов. Значит, он намного короче, чем пе­риод репродукции вирусного потомства. А раз так, клетка успевает опередить агрессора и построить оружие рань­ше, чем масса родившихся вирусов выйдет и набросится на  новые  беззащитные еще клетки.

Небольшая молекула интерферона может легко про­ходить через клеточные оболочки. Пока в зараженной клетке идет размножение вируса, интерферон уже успе­вает образоваться, выйти из этой зараженной клетки в кровь, в лимфу, в окружающее пространство и про­никнуть в другие клетки.

Хотя к синтезу интерферона способны многие груп­пы клеток соединительной и эпителиальной ткани, осо­бенно активно выполняют эту работу клетки белой кро­ви   (лимфоциты).

Основатель химиотерапии микробных инфекций не­мецкий бактериолог П. Эрлих мечтал когда-то о синтезе химических соединений, способных излечивать любые заразные болезни без вреда для больных. Интерфе­рон, бесспорно, первое такое идеальное лекарство.