Возможности генетики и реальности экономики
Возможности генетики и реальности экономики
Нередко суть аргументов в пользу генетических модификаций состоит в том, что, создавая такие модификации, ученые делают ту же самую работу, которой в течение тысячелетий занимались селекционеры, скрещивая разные сорта растений и объединяя таким образом их генетические системы. В действительности между гибридизацией и генетическими модификациями существует принципиальное различие. При традиционной гибридизации скрещивания проводятся внутри видов, пшеницу скрещивают с пшеницей, рожь с рожью. Иногда удается скрещивать и разные, но близкородственные виды. Таким образом, например, удалось получить пшенично-пырейные гибриды. Всем известны мулы – гибриды лошади и осла. Но между представителями более отдаленных видов половая гибридизация уже невозможна. При трансгенной гибридизации нет природных ограничений. В геном пшеницы можно ввести генные комплексы или отдельные гены воробья, трески или холерного вибриона. Это осуществляется не путем полового скрещивания, а путем впрыскивания с помощью ультрамикропипеток в ядро яйцеклетки ДНК, выделенной из других растений, бактерий или животных. Новая ДНК встраивается в геном яйцеклетки, приводя к образованию трансгенного растения или животного. Внедрение новых генов в нужный участок хромосом не всегда происходит удачно, и из полученных трансгенных растений проводится отбор. Аналогичные процессы происходят и в природе при вирусных инфекциях. Вирус, например, гепатита B или иммунодефицита, попадая в кровь, внедряется в первом случае в ДНК хромосом клеток печени, а во втором – в ДНК хромосом лимфоцитов крови. Эти вирусы размножаются вместе с размножением клеток. В эволюции животных и растений вирусная ДНК может переходить из поколения в поколение, модифицируясь иногда в полезный ген. Геномы человека, животных и растений содержат много участков ДНК, которые попали в хромосомы в результате вирусных инфекций миллионы лет назад и были постепенно инактивированы. Это один из вариантов генетической изменчивости. Такой же способностью внед рять свою ДНК в геномы бактерий обладают бактериофаги. Исследователи освоили этот механизм для внедрения в хромосомы новых генов. Именно таким образом в геном бактерий был «вшит» ген гормона человеческого инсулина, необходимого больным диабетом. В прошлом инсулин для инъекций получали из поджелудочной железы свиней путем очень сложных процедур. Инсулин, получаемый из культур бактерий, намного дешевле, и в настоящее время около 80% больных диабетом получают инъекции трансгенного инсулина.
В 1974 – 1975 гг., когда трансгенная технология была открыта в США, многие ученые предлагали ввести мораторий на исследования в этой области. Но джинна уже выпустили из бутылки. К этому времени наука разработала способ изоляции отдельных генов и групп генов из разных клеток и активно занялась расшифровкой полных геномов различных бактерий, растений, животных, а вскоре и человека. В генетике возникло новое направление «геномика».
Подробности многих интересных трансгенных рекомбинаций невозможно описать по той простой причине, что они засекречены. Дело в том, что генетическая инженерия может работать не только на пользу человеку, но и во вред, создавая суперлетальные формы биологического оружия. Если, например, кишечной палочке добавить не ген инсулина, а ген ботулина, сильнейшего биотоксина, то эта кишечная палочка станет биологическим оружием массового уничтожения. Такое оружие страшнее атомного, так как его легче создать, но практически невозможно уничтожить. Кукуруза, получившая гены устойчивости к гербицидам, доминирует в настоящее время в агробизнесе США. Но если те же гены сверхустойчивости к гербицидам будут внедрены в злостные сорняки, например в пырей, то это может стать катастрофой для сельского хозяйства. Именно поэтому существует система засекречивания биотехнологических методов. В связи с этим понятен протест многочисленных групп и организаций против распространения трансгенных технологий.
Данный текст является ознакомительным фрагментом.