2. Шкальные оценки
2. Шкальные оценки
Шкальные оценки – способ оценки результата теста путем установления его места на специальной шкале. Шкала содержит данные о внутригрупповых нормах выполнения данной методики в выборке стандартизации. Так, индивидуальные результаты выполнения заданий (первичные оценки испытуемых) сравниваются с данными в сопоставимой нормативной группе (например, результат, достигнутый учеником, сравнивается с показателями детей того же возраста или года обучения; результат исследования общих способностей взрослого сопоставляется со статистически обработанными показателями репрезентативной выборки лиц в заданных возрастных пределах).
Шкальные оценки в этом смысле имеют четко определенное количественное содержание и могут быть использованы при статистическом анализе. Одной из распространенных в психологической диагностике форм оценки результата теста путем соотнесения с групповыми данными является расчет процентилей.
Процентиль – процентная доля индивидов из выборки стандартизации, результат которых ниже данного первичного показателя. Шкалу процентилей можно рассматривать как совокупность ранговых градаций (см. ранговая корреляция) при числе рангов 100 и отсчете от 1-го ранга, соответствующего самому низкому результату; 50-й процентиль (PSQ) соответствует медиане (см. меры центральной тенденции) распределения результатов, Р›50 и Р‹50 соответственно представляют ранги результатов выше и ниже среднего уровня результата.
Процентили не следует смешивать с обычными процентными показателями. Последние представляют собой долю правильных решений из общего количества заданий теста в индивидуальном результате (см. первичные оценки). Ранги Р, и Р100 получают соответственно самый низкий и самый высокий результаты из наблюдавшихся в выборке, однако этим рангам могут соответствовать и далеко не нулевой (ни одного правильного решения) или абсолютный (все решения правильны) показатели (например, при общем количестве 120 заданий минимальный результат, соответствующий первому рангу, может составить 6 правильных решений, в то время как максимальный результат, соответствующий рангу Р100, будет составлять 95 правильно решенных заданий). Такая ситуация наблюдается, например, при оценке тестов скорости.
Основной недостаток процентильных шкал состоит в неравномерности единиц измерения. При нормальном распределении отдельные переменные тесно группируются в центре распределения и по мере удаления к краям рассеиваются. Поэтому равным частотам случаев вблизи центра соответствуют более короткие интервалы по оси абсцисс, расположенные по краям распределения оценок. Процентили показывают относительное положение каждого испытуемого в нормальной выборке, но не величину различий между результатами. Это создает некоторые неудобства в интерпретации индивидуальных результатов. Так, разница в первичных показателях, соответствующая интервалу Р70-Р80, может составить 10 баллов, а различие в количестве правильных решений в интервале рангов Р50-Р60 – лишь 1–3 балла.
Вместе с тем процентильные оценки обладают и рядом достоинств. Они легкодоступны пониманию пользователей психодиагностической информацией, универсальны по отношению к различным типам методик и легко рассчитываются.
Процентильные оценки не относятся к типичным шкальным показателям. Более широкое распространение в психодиагностике получили стандартные показатели, рассчитываемые на основе линейного и нелинейного преобразования первичных показателей, распределенных по нормальному или близкому к нормальному закону. При таком расчете проводится г-преобразование оценок (см. стандартизация, нормальное распределение). Чтобы определить 2-стандартный показатель, определяют разность между индивидуальным первичным результатом и средним значением для нормальной группы, а затем делят эту разность на а нормативной выборки. Полученная таким образом шкала z имеет среднюю точку М = 0, отрицательные значения обозначают результаты ниже среднего и убывают по мере удаления от нулевой точки; положительные значения обозначают, соответственно, результаты выше среднего. Единица измерения (масштаб) в шкале z равна 1а стандартного (единичного) нормального распределения.
Для преобразования полученного при стандартизации распределения первичных нормативных результатов в стандартную z-шкалу необходимо исследовать вопрос о характере эмпирического распределения и степени его согласованности с нормальным. Поскольку для большинства случаев значения показателей в распределении умещаются в пределах М ± 3?, единицы измерения простой z-шкалы слишком велики. Для удобства оценивания применяется еще одно преобразование типа z = (x – ‹x›) / ?. Примером такой шкалы могут быть оценки тестовой батареи SAT(СЕЕВ) методики для оценки способности к обучению (см. тесты достижений). Эта r-шкала пересчитана таким образом, что средней точке соответствует значение 500, а ? = 100. Другим аналогичным примером является шкала Векслера для отдельных субтестов (см. шкала измерения интеллекта Векслера, где М = 10, ? = 3).
Наряду с определением места индивидуального результата в стандартном распределении групповых данных введение ШО направлено и на достижение другой важнейшей цели – обеспечение сопоставимости количественных результатов различных тестов, выраженных в стандартных шкалах, возможности их совместных интерпретаций, сведение оценок к единой системе.
В случае, если оба распределения оценок в сравниваемых методиках близки к нормальному, вопрос о сопоставимости оценок решается довольно просто (в любом нормальном распределении интервалам М ± n? соответствует одинаковая частота случаев). Для обеспечения сопоставимости результатов, принадлежащих к рас-пределениям другой формы, применяются нелинейные преобразования, позволяющие придать распределению форму заданной теоретической кривой. В качестве такой кривой обычно используется нормальное распределение. Как и 160–150 в простом г-преобразовании, нормализованным стандартным показателям можно придать любую желаемую форму. К примеру, умножив такой нормализованный стандартный показатель на 10 и прибавив константу 50, получаем Т-показатель (см. стандартизация, миннесотский многоаспектный личностный опросник).
Примером нелинейно преобразованной в стандартную шкалу является и шкала станайнов (от англ. standart nine – «стандартная девятка»), где оценки принимают значения от 1 до 9, М = 5, ?=2.
Шкала станайнов получает все большее распространение, сочетая в себе достоинства стандартных шкальных показателей и простоту процентилей. Первичные показатели легко преобразуются в станайны. Для этого испытуемых ранжируют по возрастанию результатов и из них образуют группы с числом лиц, пропорциональным определенным частотам оценок в нормальном распределении тестовых результатов (табл. 14).
Таблица 14
Перевод первичных тестовых результатов в шкалу станайнов
При трансформации оценок в шкалу стэнов (от англ. standart ten – «стандартная десятка») проводится аналогичная процедура с той лишь разницей, что в основании этой шкалы лежат десять стандартных интервалов. Пусть в выборке стандартизации 200 человек, тогда по 8 (4 %) испытуемых, имеющих самые низкие и самые высокие оценки, будут отнесены к 1 и 9 станайнам соответственно. Процедура продолжается до заполнения всех интервалов шкалы. Соответствующие процентным градациям баллы по тесту, таким образом, будут упорядочены в шкалу, соответствующую стандартным частотам распределения результата.
Одной из наиболее распространенных форм шкальных оценок в тестах интеллекта является стандартный IQ-показатель (М = = 100, ? = 16). Эти параметры для стандартной шкалы оценок в психодиагностике выбраны в качестве эталонных. Существует довольно много шкал, опирающихся на стандартизацию; их оценки легко сводимы друг к другу. Шкалирование, в принципе, допустимо и желательно для широкого круга методик, применяемых в диагностических и исследовательских целях, в том числе и для методик, результаты которых выражены в качественных показателях. В этом случае для стандартизации можно использовать перевод номинативных шкал в ранговые (см. шкалы измерительные) или разработать дифференцированную систему количественных первичных оценок.
Следует отметить, что при всей простоте, наглядности шкальные показатели являются статистическими характеристиками, позволяющими лишь указать на место данного результата в выборке из множества аналогичных по характеру измерений. Шкальный показатель даже для традиционного психометрического инструмента является лишь одной из форм выражения показателей теста, используемых при интерпретации результатов обследования. Количественный анализ при этом должен всегда проводиться в комплексе с многосторонним качественным изучением причин возникновения данного тестового результата с учетом как комплекса сведений о личности испытуемого, так и данных о текущих условиях обследования, надежности и валидности методики. Гипертрофированные представления о возможности обоснованных заключений лишь по количественным оценкам приводили к многим ошибочным представлениям в теории и практике психологической диагностики.
Данный текст является ознакомительным фрагментом.