Глава 6. ТАЛАЯ ВОДА КАКАЯ. В НЕЙ ТАЙНА?
Глава 6. ТАЛАЯ ВОДА КАКАЯ. В НЕЙ ТАЙНА?
Живу в краю, где нет седин,
Где тают глыбы вечных льдин
С. Стальский, дагестанский поэт.
Из предыдущих глав мы уже знаем какое огромное значение для нас имеет хорошая питьевая вода. О том же говорит и Ю. Андреев в "Трех китах здоровья": Важнейшим законом здорового питания является употребление животворной воды. Мы только что выяснили, какую воду можно принять за оптимальную питьевую, а в приведенной выше цитате речь идет о какой-то незнакомой нам животворной воде. Ниже мы еще увидим, что понимается под этой водой, а сейчас я хотел бы только отметить насколько верна сама мысль Ю. Андреева, что не может быть конструктивного разговора о здоровом питании без учета качества той воды, которую мы пьем и на которой готовим еду и напитки. Даже качественную водку готовят на дистиллированной воде. Точно так же должны готовиться и все напитки — на высококачественной питьевой воде, чего, к сожалению, чаще всего не делается. Но мы немного отвлеклись, а теперь посмотрим какую же конкретную воду имеет в виду Ю. Андреев под определением животворной? Кратко охарактеризовав воду электролизную, магнитную, дистиллированную и прочую, он останавливает свой выбор на ТАЛОЙ воде. Цитирую:
А сейчас я особенное внимание уделю той ее разновидности, к которой в конце концов пришел, как наиболее практичной из всех разновидностей животворной воды, — талой. Она образуется в результате таяния льда и, следовательно, предварительно должна быть заморожена. В этом переходе в твердое состояние под действием отрицательных температур совершается качественное превращение кристаллической структуры льда: практически все 100% ее молекул преобразуется в единый тип — при том, что в обычной водопроводной воде до замораживания насчитывается до тридцати разных видов этого бесцветного вещества.
Это свойство упорядоченности воды позволяет высказать, как весьма правдоподобную гипотезу, почему самое большое количество долгожителей у нас в России проживает на Северном Кавказе и в Якутии. Ничего общего в этих далеко разнесенных районах нет, за исключением того, что люди там преимущественно пьют воду, образовавшуюся в результате таяния льда. К этой же гипотезе благодатного воздействия единообразно структурированной воды: почему многие птицы совершают перелет по пять-десять тысяч километров из райски прекрасных южных стран в наши холодные широты именно к моменту вскрытия рек? Не потому ли, что, приняв талой воды, они на полную мощь включают свой механизм размножения?..
В приведенной цитате, по крайней мере, имеется еще одна гипотеза по теме долгожительства и невольно хочется согласиться с ней, — ведь и в самом деле на Кавказе могут пить талую воду почти круглогодично. И приведенные в эпиграфе слова дагестанского поэта Сулеймана Стальского, и слова современного поэта Дагестана Расула Гамзатова — ...где реки похожи на барсов и прыгают с горных вершин, — указывают на ледниковый источник вод этого края. И число долгожителей в горных районах Дагестана почти приближается к теоретически возможной величине — как же при этом не согласиться с предложенной Ю. Андреевым гипотезой. Но не будем спешить с выводами. Мы уже знаем какую воду пьют в районах долгожительства, но, возможно, к тому, что мы уже знаем, добавляется и элемент талости воды. Поэтому нам все же следует выяснить, что же это такое — талая вода?
Имеется ли в приведенной выше цитате Ю. Андреева достаточно убедительный ответ на этот вопрос? На мой взгляд, такого ответа там нет. Ю. Андреев, как и многие другие авторы, видит причину необыкновенных свойств талой воды в изменении ее кристаллической структуры. Он даже подчеркивает, что при отрицательных температурах практически все 100 % молекул воды преобразуется в единый тип. Да, при замораживании воды образуется кристаллическая структура льда. Эта структура однотипна. Но это же не питьевая вода с упорядоченной структурой, а лед, прочность которому обеспечивают водородные связи. При таянии льда водородные связи рвутся, но не все, какая-то небольшая часть связей остается, объединяя отдельные молекулы воды в большие блоки. И чем выше поднимается температура воды, тем все меньше в ней остается водородных связей. В связи с этим появились рекомендации пить талую воду холодной, чтобы воспользоваться более структурированной водой.
Но если мы даже и согласимся с тем, что в свежеприготовленной и выпитой нами талой воде остается еще достаточно много льдоподобных структур, то нам не обойтись все же без ответа на такой вопрос: а что они дают нашему организму? Ответа на этот вопрос еще никто не дал, но как при этом лихо эксплуатируется аргумент льдоподобности во всех доказательствах необыкновенных свойств талой воды.
А теперь рассмотрим несколько примеров, связанных со льдом и с его кристаллической структурой.
Пример первый. О наступлении морозов мы узнаем не только по термометру или по прогнозу погоды, но и по замерзшим лужам. А более любопытные при этом еще и пытаются выяснить как это на поверхности грязной лужи образуется такой прозрачный лед?
Пример второй. Эскимосы при приготовлении питьевой воды берут морской лед, прекрасно понимая, что получат из него пресную воду. Почему?
И третий пример. В Японии во время зимних праздников создают ледяные скульптуры. Они прозрачны, как и подобает быть льду. Все попытки японцев получить цветной лед не увенчались успехом, так как ввести в кристаллическую решетку льда вещества-красители практически невозможно. Кристаллы льда не допускают внутрь себя каких-либо других молекул, кроме молекул воды. Поэтому становится прозрачным и лед, образовавшийся на поверхности грязной лужи. Поэтому и лед, образующийся из морской воды, вытесняет из себя все минеральные соли, имеющиеся в ней. И естественно, что из такого льда получается пресная вода. В наше время на этом принципе строятся опреснители морской воды. Но когда-то даже Ломоносов ошибался, полагая, что пресные льды Ледовитого океана имеют речное происхождение.
Приведенные примеры показывают нам, что льдоподобная структура воды прежде всего не допускает нахождения в кристаллах льда никаких иных молекул, кроме молекул воды. Хорошо это или плохо с точки зрения физиологической роли воды в нашем организме? Кому-то может показаться, что это очень хорошо, что вода в организме будет находиться в исключительно чистом состоянии. Но наш организм не является просто сосудом для воды. Он больше похож на огромную химическую лабораторию, где одновременно протекают тысячи химических реакций, и протекают они в водных растворах. И одной из основных функций воды в нашем организме является функция растворителя. Она растворяет все полезные вещества пищи, чтобы организм мог обеспечить себя и строительными, и энергетическими материалами, она же растворяет и выводит из организма все ненужные ему вещества, которые мы обычно называем шлаками, чтобы содержать организм в чистоте. Так может ли с этой ролью первоклассного растворителя справиться льдоподобная вода, которая не допускает в свои структуры никакие другие вещества? Очевидно, что нет.
В предыдущей главе речь шла о водородных связях и поверхностном натяжении воды и мы уже знаем, что снижение поверхностного натяжения воды (а это равнозначно ослаблению водородных связей между молекулами воды) даже на незначительную величину благотворно сказывается на нашем здоровье. Но можно ли говорить об ослаблении водородных связей в льдоподобной воде? Конечно же нет. И в таком случае талая вода, если исходить только из позиции ее льдоподобной структуры, должна была бы уступать по своим качествам обыкновенной воде. По-видимому, тайна талой воды заключается в чем-то другом, что нам еще предстоит найти и обосновать. Но поскольку многие авторы, пишущие о талой воде, объясняют ее необыкновенные свойства только ее льдоподобной структурой, то мне поневоле придется еще раз задержать внимание читателей на этой структуре.
Водородные связи, создающие структуру льда, сохраняются в жидкой воде, как уже было сказано выше, лишь частично. Доля разорванных водородных связей в жидкой воде при 0°С по данным различных авторов колеблется от 3 до 72 %. Такая картина наводит на грустные размышления, так как мы становимся свидетелями явного разночтения в оценке свободных молекул без водородных связей. И это всего лишь при 0°С, когда лед только-только растаял. А сколько же остается стабильных водородных связей при нормальной температуре нашего организма — ответить на этот вопрос еще сложнее.
К интересным выводам пришли ученые Сибирского отделения АН СССР В. Корсунский и Ю. Неберухин. В статье "Согласуется ли представление о льдоподобном строении воды с ее радиальной функцией распределения?" они отмечают, что выполненные ими расчеты показывают принципиальные различия распределений межмолекулярных расстояний в жидкой воде и в кристаллическом льду. Полученные результаты свидетельствуют о существенных отличиях в распределении непрерывных сеток водородных связей воды и решетки льда. Делается вывод, что льдоподобная конфигурация в жидкой воде реализуется не за счет сохранения льдоподобного каркаса, а осуществляется построениями случайной сетки водородных связей. Выполненные расчеты не подтвердили наличия в жидкой воде межмолекулярных расстояний, характерных для кристаллической решетки льда.
Таким образом, мы видим, насколько противоречивы какие-либо конкретные суждения о структуре воды. Экспериментальные исследования и теоретические расчеты дают повод усомниться в правильности широко распространенных представлений о существовании в жидкой воде льдоподобных формирований, а тем более в том, что последние оказывают позитивное влияние на наше здоровье.
И если мы уже почти что убеждены, что не льдоподобная структура определяет необыкновенные свойства талой воды, то что же тогда?
Некоторой подсказкой для ответа на поставленный выше вопрос нам может послужить метод очистки водопроводной воды в домашнем холодильнике, который предложил инженер из Москвы А. Лабза. Этот многоступенчатый метод заключает в себе очистку исходной водопроводной воды от органики и пестицидов, а также вроде бы и от тяжелой воды, а в итоге дает необыкновенного качества талую воду. О качестве этой воды автор предложенного метода судил по результатам восстановления своего здоровья при употреблении только этой воды.
Я не буду пока касаться вопроса очистки исходной воды от тяжелой воды по этому методу, а сразу перейду ко второй стадии приготовления талой воды, которая заключается в замораживании не всей массы взятой воды, а только части ее (30 — 50 %). В процессе замораживания из образующегося льда в незамерзшую воду перемещаются почти все растворенные в воде соли и нерастворимые примеси. И если мы прервем на этом этапе замораживание и сольем всю оставшуюся воду в канализацию, а оставшемуся в посуде льду дадим растаять, то в результате получим очищенную талую воду. Полученная таким способом талая вода, по мнению А. Лабзы, имеет оздоровительные свойства, которые достигнуты благодаря очистке этой воды от вредных примесей и от тяжелой воды, а также благодаря приобретенным ею в холодильнике свойствам талости (неизвестно каким, отмечу я).
Автор этого метода получения очищенной талой воды заметил и образующийся тяжелый лед, и мутный осадок в неиспользуемой воде, и кристальную чистоту готовой воды, но он не обратил внимание на химический состав исходной и очищенной воды. А я могу уже заранее сказать, что химический состав полученной по этому методу воды значительно отличается от химического состава исходной воды. И это легко проверить, но только в лабораторных условиях. И не в определенном ли химическом составе следовало бы поискать тайну талости? И почему все, пишущие о талой воде, полностью игнорируют саму суть химического состава воды, как будто для питьевых целей мы используем только известную из школьного курса химии идеальную Н2О? Ответом на этот вопрос может послужить почти вся 4-я глава, из которой нам стало, по крайней мере, ясно, что химическому составу воды мы никогда не уделяли должного внимания. А между тем природная вода растворяет в себе практически все соли, которые она встречает на своем пути. И поэтому химический состав природных вод может быть очень разным и не все они поэтому могут быть питьевыми, а тем более еще и оказывать оздоровительное действие. Так почему же не начать исследование таинственных свойств талой воды именно с ее химического состава, который легко определяется (но не у себя дома), а не топтаться на ее структурном составе (что само по себе сегодня модно), который, по всей видимости, не имеет никакого отношения к ее хорошим физиологическим качествам.
Исследование талой воды, полученной по методу инженера Лабзы (частичное замораживание воды в морозильной камере холодильника), дало мне следующие результаты. В качестве исходной я брал днестровскую воду, в которой было 65 мг/л ионов кальция. В полученной же из нее талой воде кальция было только 16 мг/л. А мы уже знаем, что такую воду по кальцию имеет река Лена в Якутии. И вспомним теперь о гипотезе Ю. Андреева, по которой он большое число долгожителей в Якутии объясняет тем, что люди там преимущественно пьют воду, образовавшуюся в результате таяния льда. А какая же вода образуется в результате таяния льда? Прежде всего это бескальциевая и вообще бессолевая вода. Но такая вода лишь в редких случаях используется как питьевая. И не потому, что ее нельзя пить, а лишь потому, что по пути к человеку она успевает обогатиться солями. А в какой мере она насыщается солями — это нам уже известно. В Якутии, как мы уже знаем, вода постоянно остается маломинерализованной и с низким содержанием кальция, а вот на Кавказе не все обстоит так же благополучно, как в Якутии, и поэтому на большей части Кавказа относительное число долгожителей значительно ниже якутского показателя.
А теперь мы вновь продолжим обсуждение метода получения талой воды, предложенного инженером Лабзой. Мы видим, как с помощью морозильной камеры можно получить хорошую воду типа якутской из плохой днестровской воды. Я не привожу здесь данные по величине всех остальных компонентов химического состава полученной воды, так как они не играют в данном случае существенной роли, но содержание кальция в результате этой несложной операции понизилось больше, чем на 70 %, и именно это обстоятельство перевело воду из одного качественного состояния (плохая питьевая вода) в другое (хорошая вода). Я еще раз хочу подчеркнуть, что особые благоприятные качества воде, полученной по методу А. Лабзы, задала никакая не талость ее, а всего лишь низкая концентрация кальция в ней. На изменение химического состава полученной в результате такого частичного замораживания воды никто не обратил внимания, но эта вода обладала оздоровительными качествами и их необходимо было как-то объяснить. И поскольку хорошее следствие талой воды — оздоровление организма — наступало после определенного действия — замораживания воды — то это последнее действие, то есть замораживание воды, и признавалось за истинную причину нового качества воды. Точно так же и в книге Б. Кристофера "Загадки Земли", отдельные цитаты из которой я приводил в предыдущей главе, нечто неопределенное говорилось и о структуре воды, и о влиянии такой структурированной воды на долголетие. Цитирую:
...Коанда пытался разгадать секрет того, почему вода {из местечка Хунзакут в Пакистане, где проживает много долгожителей — прим. Н. Д.) обладает активностью и исцеляет разные недуги. Целебные свойства воды он прежде всего связал с молекулярной ее структурой,... Коанда со всем тщанием изучил жизненные соки снежинки и убедился, что это важное свойство исчезает, как только нарушается структура воды. И напротив, чем длительнее жила снежинка, тем она была полезнее для организма и тем было больше сродства с жизненными соками человека, постоянно употреблявшего этот чудесный напиток. Подобная жидкость прибавляла людям силу, долголетие.
Ученый обнаружил, что вода, в которой образуются долгоживущие снежинки, делает чудеса не только в Хунзакуте. Во время своих путешествий в Грузию, Перу, предгорья Тибета он нашел прямую связь между качеством питьевой воды и продолжительностью жизни больших групп населения. Правда, Коанда еще не в состоянии объяснить, почему ледовая вода удлиняет человеческий век.
В приведенной цитате меня удивили два момента. Первый — что исследователь, не задумываясь, и не имея на то доказательств, взял да и связал целебные свойства воды прежде всего с ее молекулярной структурой. И далее — второй момент — этот исследователь говорит, что он находит прямую связь между качеством питьевой воды и продолжительностью жизни больших групп населения в определенных районах, в том числе и в Хунзакуте, хотя он и не в состоянии объяснить в чем заключается это качество, а также почему ледовая вода удлиняет человеческий век. Под качеством воды этот исследователь понимает всего лишь такую воду, в которой образуются долгоживущие снежинки. Возможно, что и по поведению снежинок можно определить мягкую воду, а именно таковой и является ледовая вода, но о жесткости воды и тем более о содержании в воде ионов кальция, этот исследователь не говорит ни слова. И в результате структура снежинки (замерзшей воды) была автоматически и бездоказательно перенесена на воду, получающуюся при таянии льда, и в этом виделась причина долголетия людей, проживающих в некоторых районах, где наблюдается много долгожителей. Из 1-ой главы мы уже знаем, что районы долгожительства имеют воду с низким содержанием кальция, а из 2-ой главы мы узнали как низкое содержание кальция в природной и в питьевой воде связано с уровнем нашего здоровья. А идею Коанды, поданную им уже более 60-ти лет тому назад, никто за это время не только не доказал, но и не показал, как же ведет себя структурированная вода в организме человека, если она вообще такая в нем имеется, а тем более, как такая вода способствует долголетию. Но сам термин структурированности воды продолжает жить и вводить в заблуждение многих и многих читателей, а в последнее время в некоторых целительных изданиях появилось и продолжение структурированности воды — стали говорить и о структурированной моче, и о структурированной крови, и все так же бездоказательно.
Любая вода, в том числе и талая, может быть исследована по химическому составу. И естественно, что взятая у ледников талая вода будет содержать и очень мало всевозможных солей, и очень мало кальция. Последний фактор и делает такую воду, которую мы называем талой, благоприятной не только для организма человека, но и для всего живого. Но если такая талая вода пройдет какое-то расстояние до потребителя, то она может и сохранить свои особые качества, если по пути в ней не будет растворено много кальция, но может и потерять их, если в ней появится много кальция. Обо всем этом говорилось подробно в 4-ой главе. Некоторые же авторы, повествующие о талой воде, высказывают мысль, что талость воды — явление быстропроходящее, а поэтому талая вода от ледников может дойти только до определенного места, а дальше она уже не будет обладать свойствами талости. И естественно поэтому предположить, что среди людей, пьющих уже потерявшую свои свойства талую воду, будет меньше долгожителей, чем чуть выше в горах, где эта вода еще имела такие свойства.
Примерно такая картина наблюдается и в маленькой Абхазии, где очень много долгожителей живет на склонах Кодорского хребта, а у подножия хребта и у самого устья реки Кодори долгожителей не очень много — видно и в самом деле не доходит до этих мест талая вода с вершин Кодорского хребта. Но я еще в главе "Главная причина долгожительства" говорил о том, что геологическое строение Кавказа таково, что в одних местах много залежей кальциевых солей (известняков) и вода там содержит много кальция, а в других местах магматические породы сохраняют воду в ее первозданном виде и в ней очень мало кальция. Так и Кодорский хребет сложен из магматических пород и в его пределах природные воды содержат очень мало кальция и там много долгожителей, а у его подножия находятся известняки, а поэтому и вода содержит много кальция, и поэтому там так мало долгожителей. И в итоге долгожителей много не там, где талая вода еще сохраняет свою талость, а только там, где она еще. не содержит много кальция. Но если не делать химических анализов воды, то можно бесконечно долго продолжать придерживаться мнения, что только сам факт замораживания воды уже придает ей необыкновенные свойства. Ничего подобного. Если при частичном замораживании по методу Лабзы происходит по сути изменение химического состава той же днестровской воды и она становится уже высококачественной водой, то стоит нам заморозить всю взятую нами ту же днестровскую воду, а потом дать растаять всему льду, как мы получим все ту же плохую днестровскую воду, а не облагороженную талую. И никаким оздоровительным эффектом такая вода обладать не будет, разве что психологически нам легче будет ее пить.
Можно провести некоторую аналогию между химическим составом талой воды и спектральным составом солнечного света. Если не производить с помощью призмы разложение солнечного света на его составляющие, то можно бесконечно долго утверждать, что он бесцветный. Точно так же если не производить химического анализа талой воды, то можно утверждать, что по химическому составу в ней нет ничего особенного, что только само замораживание и дает последующий положительный эффект такой воде. А так как в природе талая вода рождается изо льда или снега, содержащих в себе ничтожно малое количество минеральных веществ, в том числе и кальция, то в результате получается очень мягкая вода, что и определяет ее особые свойства.
Рассмотрим еще одно природное явление, которое, опять-таки, приписывается благотворной силе талой воды. Привожу цитату из одной публикации:
...все видели, как ранней весной на прогалинах начинает зеленеть трава. Не успевает сойти снег, а уже появляются цветы. На первый взгляд быстрый рост растений не кажется странным, ведь все сильнее греет солнце и буквально на глазах просыпается природа. Это явление естественно, мы к нему привыкли, и мало кто обращает на него внимание и задумывается над такими мгновенными переменами. Но в чем же причина? Почему в первые дни весны растения так стремительно зеленеют и тянутся к солнцу? Об этом позаботилась мудрая природа. Оказывается, главную роль в активном весеннем пробуждении играет талая вода.
А. Лабза
Последнее предложение в приведенной цитате начинается со слова оказывается, но, на мой взгляд, здесь более уместным было, бы слово возможно, так как утверждение о том, что главную роль в активном весеннем пробуждении играет талая вода, явно ошибочное. И вот почему. Многие наблюдали, как в южных районах, где подчас и зимы не бывает, а следовательно, не бывает ни льда, ни снега и никакой талой воды, но наступает весна и растения начинают оживать. На фруктовых деревьях нет еще ни листочка, а они уже покрываются облаками цветов. Нет еще и фотосинтеза и деревья используют запасенную с прошлого года энергию. И все это происходит без всякой талой воды.
Но при таянии снега имеются некоторые особенности, более благоприятные для насыщения почвы водой, чем при дождевых осадках. При таянии вода не так быстро как при проливном дожде скатывается с полей и поэтому она на большую глубину пропитывает почву. Кроме того, в свежей талой воде растворено мало газов и такая вода обладает большей текучестью и она легче впитывается в почву (более подробно об этой особенности талой воды будет сказано в конце этой главы), и легче усваивается растениями, хотя эффект этот и не столь велик, чтобы по одному ему можно было считать талую воду какой-то необыкновенной водой.
А по химическому составу и талая вода, и дождевая практически одинаковы — это очень мягкие воды. Поэтому в дождливых районах, где растения в достатке обеспечиваются влагой, мы и летом, а не только весной, можем видеть сочную зеленую и рослую траву.
И еще чем благоприятна весенняя пора? Все растения не любят изнуряющего зноя, им больше подходит умеренная температура, не превышающая 20 — 25°С, что и наблюдается весной.
Как видим, весеннее буйство растений вполне объяснимо и без действия талой воды. Например, на Курильских островах, которые омываются холодными водами и где температура воздуха летом не поднимается выше 25°С, и где непрерывно моросят дожди, а почва почти не содержит солей кальция, обычная трава вырастает до величины кустарников. И все это без талой воды.
В тех же "Трех китах здоровья" Ю. Андреев делает и такое предположение: многие птицы совершают перелет по пять-десять тысяч километров из райски прекрасных южных стран в наши широты именно к моменту вскрытия рек, чтобы, приняв единообразной структурированной талой воды, они могли бы на полную мощь включать свой механизм размножения.
По-видимому, здесь, как и в случае с весенней зеленой травой, желаемое принимается за действительное. Во-первых, трудно с позиции птиц производить оценку стран — какая из стран для них более прекрасна — южная и жаркая или северная и холодная. Да и с позиции людей тоже — вспомните лермонтовские слова — С милого севера в сторону южную. А во-вторых, что мне кажется ближе к истине, птицы могут скученно зимовать в южных странах, но для гнездований им нужны обширные и уединенные места, а также определенный корм для птенцов. И в третьих, момент перелета птиц может совпадать с моментом вскрытия рек только потому, что не могут же птицы прилетать в морозное время, рискуя, замерзнуть, и не могут они особенно оттягивать перелет, так как им за короткий летний период надо выкормить и поднять на крыло молодняк. Да и еще может быть много других причин, по которым птицы ежегодно совершают перелеты, но только не талая вода является тому причиной — размножаются же птицы южных стран, которые и не меняют своих мест жительства, и не пользуются талой водой.
Не исключено, однако, что вода, имеющая определенные химические параметры — с малым содержанием кальция и слегка подкисленная углекислым газом (растворимость СО2 при 0°С в два раза выше, чем при 20°С), может оказать влияние на репродуктивные органы.
Например, в водах Амазонки живут неоновые рыбки, которые сегодня являются украшением наших аквариумов. Мы уже знаем, что Амазонка несет очень мягкую воду: в ней содержится не более 5 мг/л ионов кальция. Вначале была найдена рыбка Неон. Название Неон принято во всем мире. В течение многих лет аквариумисты безуспешно пытались развести эту рыбку, пока не выяснили, что ей нужна необыкновенно мягкая и кислая вода (общая жесткость допускается всего 1 — 2 немецких градуса, но карбонатная жесткость должна быть равна нулю, а рН 6,2). Из 2-ой главы нам уже известно, что именно карбонатная жесткость, как ее чаще всего называют в литературе о воде, создает повышенную буферную емкость крови и тем самым препятствует ее подкислению. А с подкислением крови напрямую связано снабжение клеток организма кислородом. По-видимому, для нереста этих рыбок (а они невелики и достигают в размере всего лишь 4 см) в наших водах, более жестких, чем амазонская вода, недостает кислорода для их репродуктивных органов. Поэтому в наших условиях этих рыбок перед нерестом помещают практически в дистиллированную воду, умягченную путем химической очистки, пропуская ее через ионообменные смолы, когда в воде остаются все растворенные в ней элементы, кроме ионов кальция и магния. При химической очистке получается не менее мягкая вода, чем дистиллированная, а то и более мягкая. По мере же роста молоди в аквариум постепенно добавляют местную воду, подготавливая таким образом молодых рыб к иной среде, в которой они позднее будут содержаться у всех любителей рыб. Но для нереста опять надо готовить дистиллированную или бескальциевую воду.
В связи с этими рыбками хочу сказать несколько слов по поводу одной недавно выдвинутой английскими учеными гипотезы о долгожительстве. Эти ученые провели опрос супружеских пар, обработали статистические данные и пришли к выводу, что секс продлевает жизнь. Возможно, что и здесь все поставлено с ног на голову. Не вызывает сомнений, что половая активность напрямую связана со здоровьем человека, а здоровье его в первую очередь определяется уровнем снабжения всех клеток организма, в том числе и половых желез, все тем же кислородом. Поэтому внешне может казаться, что более активные половые партнеры именно этой активностью и продлевают себе жизнь. А статистика в районах долгожительства (где долгожительству, как известно, способствует мягкая вода) говорит о том, что долголетия достигают также и многие из людей, никогда не бывших в брачных узах. Таким образом, следовало бы считать, что здоровье обеспечивает людям и долголетие, и сексуальную активность, но не наоборот, что сексуальная активность обеспечивает долголетие.
А теперь рассмотрим метод очистки питьевой воды от тяжелой воды, предложенный А. Лабзой (очистка воды в домашнем холодильнике). Прежде всего я хочу сказать, что получение качественной воды с помощью домашнего холодильника (в морозильной камере) — это всего лишь красивая идея. С помощью домашнего холодильника нельзя получить достаточного количества питьевой воды, поэтому не стоит этого и затевать. Сам автор этого метода в переписке со мной подтвердил это. Необходимое количество воды по этому методу он получал в зимнее время, замораживая воду на балконе.
Суть обсуждаемого метода очистки питьевой воды от тяжелой воды заключается в том, что при замораживании исходной воды сначала замерзает тяжелая вода. Так считает автор этого метода. Он полагает, что если тяжелая вода замерзает при +3,8°С, то еще до достижения всей охлаждаемой водой 0°С на верхней поверхности воды и по стенкам сосуда образуется корочка льда из тяжелой воды. Удалив этот лед, мы получим воду, не содержащую тяжелой воды, то есть только протиевую воду.
Но таковым может быть только наше желание, а в действительности мы этого сделать не сможем и вот почему. Во-первых, содержание тяжелой воды в природной сравнительно ничтожно — 1 : 6800, а поэтому так трудно отделить одну молекулу от нескольких тысяч других, почти что таких же молекул. Если, например, взять одно ведро воды емкостью 7л, то в нем будет находиться всего 1 г тяжелой воды. Представьте себе как сложно будет собрать это незначительное количество льда из тяжелой воды, если он начнет образовываться во всей массе воды при ее постепенном охлаждении. Но в действительности этого и не произойдет. Вода имеет такую особенность, что максимальной плотности она достигает при +4°С. А это означает, что при охлаждении воды с целью ее замораживания наступает такой момент, когда плотность воды по всей ее массе выравнивается и становится максимальной, а ее температура становится равной +4°С. При этой температуре тяжелая вода еще не замерзает. Но дальнейшее охлаждение воды уже не приведет к выравниванию температуры по всей массе (этого можно было бы достичь только при условии постоянного перемешивания охлаждаемой воды и при условии, что вода имела бы хорошую теплопроводность, но вода плохо проводит тепло), и поэтому более охлажденными окажутся верхние слои воды и прилегающие к боковым стенкам сосуда, в котором находится вода. В этих местах начнется замораживание практически одновременно и тяжелой, и обычной (протиевой) воды. А остальная масса воды будет находиться при температуре +4°С и будет состоять из тяжелой и протиевой воды в том же соотношении, что и до замораживания. Таким образом, очистить питьевую воду от тяжелой воды по предложенному методу практически невозможно. Может быть, и не стоило уделять этому методу столько внимания, но как часто мы идем по ложному пути в поисках здоровья. Да, тяжелая дейтериевая вода вредна для организма. В ней замедляются некоторые реакции и биологические процессы. Растворимость всех солей в тяжелой воде намного меньше, чем в обычной. Например, растворимость хлористого калия в тяжелой воде уменьшается на 88% при 25°С. А мы уже в начале этой главы вели разговор о том, что для организма особенно важно — хорошим ли растворителем является вода. Как видим, тяжелая вода уже только по этому показателю хуже обычной. Поэтому желательно было бы удалить тяжелую воду из питьевой, но для этого надо знать, по крайней мере, как это можно сделать. По предложенному А. Лабзой методу мы никак не можем удалить тяжелую воду, нам может только казаться, что мы это делаем.
В природе больше всего тяжелой воды находится в морской воде и меньше всего в дождевой и снеговой.
Заканчивая разговор о тяжелой воде, я хотел бы высказать такую мысль. Если уж даются в печатных изданиях какие-то советы по оздоровлению, то было бы желательно, чтобы они были и достаточно обоснованными, и достаточно простыми. Как можно, например, воспользоваться одним из таких советов, предложенных читателям уважаемым мною Ю. Андреевым в "Трех китах здоровья".
Цитирую:
Дорогой читатель! А если нам поступить последовательно и комплексно: взять солнечную воду, сотворить из нее талую (без дейтерия) воду по Лабзе, затем обогатить ее ионами серебра по Кульскому, затем воспользоваться методикой Залепухиных, после чего подзвучить?! Зачем вообще нужны будут лекарства, если мы сможем пользоваться этим животворным эликсиром?
Неужели кто-то отважится воспользоваться этим советом? Сам автор ни словом не обмолвился о том, приходилось ли ему готовить этот животворный эликсир.
Попытаемся хотя бы кратко рассмотреть в чем же заключается здравый смысл всех этих стадий приготовления необыкновенной по своим свойствам питьевой воды.
Начнем с того, что нам просто негде будет взять солнечную воду, если вообще можно пользоваться таким определением.
О талой и тяжелой воде в этой главе уже достаточно много было сказано и нам теперь ясно, что Ю. Андреев хотел предложить нам получение мягкой воды по методу А. Лабзы. Да, эта стадия приготовления качественной питьевой воды заслуживает внимания, но и она на поверку оказывается всего лишь красивой сказкой, так как по этому способу нельзя получить много питьевой воды в домашних условиях.
А зачем обогащать воду ионами серебра?
Известно, что ионы серебра обеззараживают воду. Они, взаимодействуя с цитоплазмой клеток, вызывают нарушения, которые ведут к гибели болезнетворных микроорганизмов. Преимущество серебра перед остальными обеззараживающими реагентами заключается в том, что их бактерицидное действие сохраняется в течение длительного времени, то есть ионы серебра одновременно являются и консервантами. Очевидно, что прибегать к использованию серебра стоит только в том случае, когда мы берем воду, не прошедшую бактерицидную очистку. Но и в таком случае очень важно выдержать правильную дозировку ионов серебра, так как передозировка их тоже неблагоприятно сказывается на здоровье. Но стоит ли пользоваться серебром, если мы берем воду из городского водопровода? По-видимому, нет, так как эта вода уже и без того обеззаражена хлором. Но если мы все же сомневаемся в бактерицидном качестве водопроводной воды, то можем ее прокипятить, что мы всегда по сути и делаем. Так зачем нам в таком случае пользоваться серебром?
Следующая стадия — методика Залепухиных (братья Вадим и Игорь).
Эту методику мы рассмотрим более подробно. О ней можно прочитать в книге В. Д. Залепухина и И. Д. Залепухина "Ключ к "живой воде".
Так в чем же суть этой очередной живой воды?
Кратко скажу, что Залепухины открыли такую закономерность — при дегазации воды увеличивается ее биологическая активность.
В своих лабораторных исследованиях Залепухины пользовались в основном дистиллированной водой.
Дегазировать воду можно разными способами: кипячением, вакуумированием и замораживанием.
Для контроля бралась дистиллированная вода, в которой газы были растворены до равновесного состояния.
Талая вода в опытах Залепухиных ничем в сущности не отличалась от природной талой воды — она была бессолевой, в ней практически нисколько не было ионов кальция.
И вот что установили Залепухины — свежая талая вода усваивалась растениями лучше, чем такая же по сути дистиллированная вода но насыщенная газами (равновесная вода). Если же талую воду оставить на несколько часов в контакте с воздухом, то усваиваемость ее растениями падала до уровня усваиваемости равновесной воды.
В этом — в повышенной усваиваемости растениями свежей талой воды — уже можно увидеть некое свойство талости, хотя оно и не очень значительно.
А вот картинка из природы, которую наблюдал писатель-натуралист Максим Зверев: Крупные белые бабочки усыпали каменистый склон на границе тающего снега. Их было так много, что издали казалось, будто кромка снега шевелится. Бабочки сосали талую воду в момент ее образования, несмотря на почти нулевую температуру воды. Ни одна из них не пила воду внизу склона, нагретую ярким полуденным солнцем.
Бабочек привлекала свежая талая вода, по всей вероятности, тем, что она легко всасывалась их организмом и легко, таким образом, утоляла их жажду. А нагретая ярким полуденным солнцем та же талая вода была не столько теплой, сколько уже насыщенной газами и какими-то минеральными веществами и поэтому хуже усваивалась организмом бабочек и они каким-то образом это чувствовали и поэтому предпочитали пить только что образовавшуюся талую воду.
Все наши рассуждения в отношении бабочек можно было бы легко отнести к области пустых домыслов, если бы не исследования братьев Залепухиных. А они нам показали, что талая вода лучше усваивается организмом сразу после таяния и несколько хуже через некоторый промежуток времени. Вот поэтому бабочки и пьют ледяную талую воду. Но Залепухины на этом не остановились, а пошли дальше и выяснили, что если не спешить пить холодную талую воду, а взять и прокипятить ее, то она станет еще лучше усваиваться нашим организмом. Так Залепухины напрочь перечеркнули всю талость талой воды. Ведь многие сторонники талой воды видели ее необыкновенные свойства в ее льдоподобной структуре и поэтому предлагали пить ее холодной, пока в ней еще сохранялись эти структуры. И ясное дело, что никому и в голову не могла прийти такая кощунственная мысль — взять и прокипятить талую воду. Но оказалось, что ее свойства от этого только улучшались. И объясняется все это очень просто. Но дополнительно я скажу, что Залепухины производили дегазацию и вакуумом, и такая вода усваивалась растениями хуже, чем кипяченая.
Секрет залепухинской воды, а это дегазированная разными способами вода, заключается в том, что при растворении кислорода в воде между ее молекулами возрастают водородные связи, в результате чего равновесная вода и усваивается растениями хуже, чем дегазированная вода, в которой водородные связи несколько ослабляются.
Как видим, даже имея дело с чистой дистиллированной водой, в которой практически не растворены никакие минеральные вещества, мы все же не можем сказать, что на свойства этой воды не оказывают влияния еще какие-то вещества — те же растворенные газы. А мы уже знаем, что при увеличении водородных связей между молекулами воды она и хуже растворяет в себе минеральные вещества (а в нашем организме вода прежде всего является растворителем), и хуже всасывается организмом (от этого страдают все клетки и наблюдается частичное обезвоживание организма и связанное с ним преждевременное старение того же организма).
Итак, при дегазации воды происходит прежде всего (и это главное в воде Залепухиных) ослабление водородных связей между молекулами воды. Об этом говорят и сами авторы книги Ключ к живой воде. Цитирую:
Таким образом, как теоретические расчеты, так и экспериментальные данные однозначно подтверждают, что при дегазации воды существенно изменяется энергия межмолекулярной (водородной) связи, увеличиваясь при структуировании и уменьшаясь при разупорядочивании структуры воды. Эти изменения энергии связи составляют 0,66 — 0,72 ккал/моль по сравнению с энергией межмолекулярной связи в равновесной воде.
Теперь нам становится понятно почему свежая талая вода усваивается растениями и животными лучше, чем старая талая вода. Не потому, что в свежей талой воде сохранялась некая талость, а просто по причине малого растворения в ней газов, в результате чего водородные связи в ней были немного ослаблены. А при кипячении талой воды происходило еще более значительное ослабление водородных связей (можно сказать даже так — при температурном воздействии на воду разрывается большее число водородных связей между молекулами воды). Поэтому вода, дегазированная в результате кипячения, лучше всасывается и выглядит как биологически активная.
Но действительно ли такая вода (дегазированная) приобретает некую биологическую активность?
Прежде всего следует сказать, что такую активность мы определяем опосредованно или по усваиваемости этой воды растениями, или же по их продуктивности. Но усваиваемость этой воды растениями, как мы уже выяснили, зависит только лишь от величины водородных связей между молекулами воды. А продуктивность растений зависит в первую очередь от обеспечения всех их клеток водой. И если воды достаточно и она хорошо всасывается растениями, то от этого и повышается продуктивность растений. То есть, как я полагаю, при дегазации воды не происходит какая-то биологическая активация воды, а происходит всего лишь расструктуризация воды, что позволяет и растениям, и живым организмам в оптимальном количестве усваивать ее.
Поскольку мы в этой главе вели разговор прежде всего о талой воде, которую мы определили всего лишь как очень мягкую и почти бессолевую воду, то такая вода должна быть практически идентична дистиллированной воде, а поэтому все исследования, проводившиеся с дистиллированной водой, можно однозначно перенести и на талую воду. И тогда мы видим, что свежая талая вода усваивается растениями несколько лучше, чем та же талая вода, длительное время находившаяся в контакте с атмосферой, но лучше всего усваивается растениями кипяченая талая вода. Но, опять-таки, если и эту кипяченую талую воду подержать несколько часов в открытом сосуде, то ее усваиваемость снизится до равновесной талой воды. В итоге мы видим, что не "талость" как таковая определяет благоприятные для нашего организма качества воды, например, повышенную всасываемость такой воды, а только состояние водородных связей между молекулами этой воды. Но поскольку мягкие воды имеют менее прочные водородные связи в сравнении с жесткими водами, то мягкие воды и легче всасываются нашим организмом. А так как талые воды — это всегда мягкие воды и поэтому они всегда лучше всасывались живыми организмами и это благоприятно сказывалось на их жизнедеятельности (следует помнить, что мягкие воды способствуют поддержанию кислой реакции крови в организме, что является определяющим фактором для нашего здоровья), то невольно начали искать причину такого действия этих вод. И в результате за такую причину без доказательств стали принимать льдоподобную структуру талой воды. Но Залепухины показали, что наиболее благоприятной для нашего организма является вода, подвергшаяся температурному воздействию. Вряд ли теперь найдутся желающие, чтобы высказывать мнение, что при температурном воздействии вода становится еще более структурированной, чем талая вода.
Кипячение воды мне бы хотелось сравнить с магнитной обработкой той же воды. О последнем способе обработки воды говорится очень много, но каждый раз о самом эффекте такой обработки. А в чем заключается суть такой обработки — об этом, как правило, не говорится ни слова. А ведь и при магнитной обработке воды происходит разрыв какой-то части водородных связей между молекулами воды и такая вода начинает легче усваиваться растениями, в результате чего повышаются (хотя и немного) и урожаи тех культур, которые поливались омагниченой водой. Увеличивается и растворяющая способность такой воды (вспомните о растворении накипи), и смачивающая способность ее (уменьшается расход цемента при строительстве при сохранении необходимой прочности изделий).
И если мы увидим, что и дегазация воды, и кипячение, и магнитная обработка приводят к одному и тому же результату — к уменьшению водородных связей между молекулами воды, то не стоит ли нам отказаться от применения методики Залепухиных в сельском хозяйстве, так как она связана с большими энергозатратами, а взять за основу обработки воды в сельском хозяйстве магнитный метод, по эффективности равный методу Залепухиных, но более удобный и не столь энергоемкий? Но для нас сегодня важнее другое — наше здоровье. И если мы видим, что для нашего здоровья благоприятна не только мягкая вода, но еще и такая, которая имела бы ослабленные водородные связи, то мы и должны стремиться достичь этого любыми возможными способами (более подробно об этом говорилось в предыдущей главе).
А теперь еще раз посмотрим, стоит ли нам пользоваться методикой Залепухиных, как нам настоятельно это рекомендует делать Ю. Андреев?
Напомню, что методика эта достаточно проста — вскипятить воду и быстро ее охладить до комнатной температуры (желательно в герметически закрытом сосуде). И делается такая процедура для того только, чтобы из воды ушли растворенные в ней газы и чтобы в таком виде она лучше усваивалась организмом.
Данный текст является ознакомительным фрагментом.