Причины повреждения мембран

We use cookies. Read the Privacy and Cookie Policy

Причины повреждения мембран

При определенных ситуациях и нагрузках в ткани может образовываться большое число высокотоксичных свободных радикалов: оксидов, гидроксидов и перекисей. Эти соединения химически очень агрессивны. Они способны повреждать клеточные мембраны и вызывать самые разные нарушения жизнедеятельности организма. Но сами по себе они не являются первичным механизмом новообразования, а служат лишь фоном, на котором могут произойти последующие роковые изменения. Это всего лишь один из факторов образования в организме большого количества ущербных клеток, часть которых в дальнейшем под влиянием других факторов может переродиться в злокачественные.

Например, в мышцах при перегрузках в условиях недостатка кислорода бескислородное окисление глюкозы может увеличиться в 1000 раз, сопровождаясь огромным выбросом радикалов. Тем не менее от этого онкоклетки не появляются.

Любая нагрузка на ткань и ее клетки постепенно может приводить к нарушению мембран — это и травмы, и вирусы, и гормональное бремя. В итоге в тканях может образоваться застойное провоспалительное поле.

Поэтому в теории канцерогенеза следует пересмотреть значение канцерогенных веществ и радиоактивного облучения, в первую очередь повреждающих мембранномитохондриальный комплекс. Канцерогены не являются мутагенами, а действуют через мембраны.

Имеются определенные доказательства того, что онкологические клетки имеют морфологически измененные митохондрии и мембраны. Электронно-микроскопические наблюдения свидетельствуют о потере четкости и изящества в строении их оболочек, о набухании гранул — скоплений энергоемких соединений и т. д. Они напоминают изношенные механизмы. Это тоже говорит о существенном нарушении их качественных функций.

Мембраны онкоклеток имеют аномально высокую проницаемость.

Причины неполноценности мембран:

• недостаток антиоксидантной системы;

• чрезмерное образование радикалов, канцерогенов;

• вирусы и инвазии;

• недостаточность омега-3 кислоты.

Важнейшей причиной неполноценности мембран может стать и недостаточность омега-3 кислоты, связанная с недостатком потребления хлорофилл содержащих продуктов. Мембраны клеток состоят из двух жировых и одного белкового слоя. Жировые слои как раз и образованы из омега-3 и омега-6 полиненасыщенных жирных кислот (ПНЖК) в соотношении 3:1. Главным является способность омега-3 конкурентно замещать омега-6 в мембранах клеток и обмене веществ.

Омега-3 затрудняет превращение арахидоновой кислоты в простагландины, которые стимулируют рост опухолей; ингибируют (тормозят) активность ферментов, способствующих опухолевому перерождению; ингибируют активацию онкогенов и факторов роста опухолей; предотвращают образование новых сосудов в опухолях, нужных для интенсивного питания раковых клеток (онкоангиогенез); тормозят рост и вызывают смерть опухолевых клеток. В антиканцерогенном действии кислоты омега-3 имеет значение ее способность стимулировать иммунитет и нормализовать липидный обмен.

Известно, что оболочка митохондрий аналогична мембране клеток. Оболочка несет целый ряд функций, в том числе является основой для расположения на ней крист, в которых находятся ферменты, обеспечивает проницаемость, изоляцию своей ДНК от радикалов. При неполноценных мембранах клетки выходят из оптимального режима работы, ослабевает эффективность их функционирования, митохондрии вынуждены увеличивать свои обороты, работать неэкономно, вплоть до перегрева и порчи ДНК.

Но в природе омега-3 кислота встречается крайне редко. Считается, что в организме она сама не вырабатывается, но можно ожидать, что лечение с помощью регулярного приема достаточного количества хлорофилл-комплексов естественным путем повысит ее уровень. При этом сразу отмечу, что хлорофилла в пище постоянно должно быть много, чтобы перевести липидный обмен веществ в сторону самопроизводства омега-3.

Последние научные исследования показали, что эта кислота все же может вырабатываться в организме на фоне регулярного применения большого количества зеленых листьев, содержащих хлорофилл, или сока из зелени. Но беда в том, что современный человек резко ограничил потребление зеленой листвы в своем пищевом рационе.

Именно в связи с изменением качества питания, из которого полностью исключены хлорофиллсодержащие продукты, происходит резкое повышение уровня заболеваемости онкологией у современных людей.

Кроме того, значительно снижен антиоксидантный комплекс в пище, отчего многократно ослабевает и защита мембран и их сенсорных структур. Все это служит прологом для дальнейшей малигнизации клеток.

Определенные пролиферативные нагрузки, превышающие функциональные возможности ткани, стимулируют избыточную пролиферацию[4] — как неспецифическую защитную реакцию ткани. Но это еще не является причиной образования опухоли. Для начала онкопроцесса нужно сочетание целого ряда факторов, в том числе и неустойчивость мембран.

Кроме того, омега-3 также является липидной кислотой, имеющей отношение не только к строению мембран, но и энергетике клеток и работе их митохондрий.

Без жирных кислот ферменты, обеспечивающие усваивание кислорода в дыхательной системе, не функционируют. Организм начинает задыхаться, даже если человек дышит чистым воздухом. Дефицит жирных кислот подрывает жизненные функции организма. Таким образом, рак возникает, когда нам не хватает омега-3.

Очевидно, в первую очередь недостаток омега-3 сказывается на работе митохондрий, на их естественной защите от радикалов, постоянно образующихся в процессе дыхания. В данном случае кислота играет роль мощного антиоксиданта.

Кроме того, многие ферменты не могут нормально работать в условиях неполноценности строения мембран. Энергетика клетки выходит из оптимального экономичного энергетического режима и переходит на работу вразнос, что приводит к повреждению ДНК митохондрий и их перерождению. Это хорошо вписывается в энергетические теории онкологии. Последнее становится краеугольным камнем в моей мембранно-митоходриальной теории рака.

Предлагаемая мною теория канцерогенеза показывает, почему опухоли можно и нужно лечить естественными безвредными методами, в частности, с помощью предлагаемой мною «катаболической ловушки», и объясняет реальные описанные случаи исцеления без всяких варварских методов химио- и других «терапий».

Провоспалительный статус онкоклеток

Из-за недостатка в организме омега-3 кислоты арахидоновая кислота беспрепятственно превращается в простагландины, которые на клеточном уровне включают механизмы воспаления. Они и служат стартовой площадкой для последующих процессов перерождения здоровых клеток в опухолевые.

В последние годы ученые выдвигают возможные провоспалительные механизмы как первопричину опухолей на клеточном уровне.

Трактовать это можно так, что некие провоспалительные процессы (при отсутствии инфекции) являются нагрузкой не на системном уровне организма, а на клеточном уровне определенных тканей. По ряду причин в результате таких процессов происходит первичное и устойчивое нарушение строения многослойных мембран клеток. В определенных случаях (в том числе и при недостаточности омега-3 кислоты) из-за нарушения структур мембран происходит несоответствие сопряженности работы мембранной помпы и энергетических станций — митохондрий. Эти взаимоотношения очевидно определяются ДНК митохондрий (но не ДНК ядра). От чрезмерного дисбаланса отношений этих структур и длительной энергетической нагрузки ДНК митохондрий начинает портиться, «расплавляться». Это приводит к тому, что митохондрии в клетках постепенно ограничивают свою активность, а в дальнейшем прекращается воспроизводство части митохондриальных органелл (клеточная аберрация, неполноценность). В ряде случаев происходит репарация[5] — в клетках, а при определенных сочетаниях возникают устойчивые клеточные клоны, не способные к репарации. Количество митохондрий в клетках существенно снижается.

Следовательно, основные программы генома ядра клетки могут быть зависимы от энергетического статуса клетки. В результате дифференциальные гены в различной степени отключаются, чем и обусловливается степень злокачественности и тип опухоли. Новое поколение таких клеток, сохраняя нормальные функции генома ядра, тем не менее не восстанавливают геном митохондрий. Он еще есть, но урезан, из-за того что частично «выбиты» релейные линии и нужно намного больше усилий, чтобы завести все энергомашины. Клетки становятся ущербными. Как результат, они вынуждены переходить на примитивный уровень энергообеспечения. Для этого клетка должна поменять свой внутренний гомеостаз, трансформировать режим работы. Это проявляется в переключении программ генома ядра, так как генетические константы, определявшие прежнюю работу генетического аппарата, изменились из-за условий, которые ранее определяли митохондрии. Работа митохондрий была сопряжена с функционированием генома ядра — в новых условиях этой корректирующей доминаты митохондрий нет. Это и служит причиной раскрепощения, экспрессии ряда закрытых ранее генетических программ. Как результат — включение древних примитивных программ с гликолизной энергетикой.

Такой тип энергетики не позволяет подключать высшие дифференциальные программы развития и, следовательно, клетки могут функционировать только по вегетативным принципам существования. Эти первичные программы намного сильнее последующих наслоений. Клетки постепенно теряют свою дифференциацию, скатываются на примитивные уровни. Такие вторичные генетические перенастройки и нарушения в клетках нельзя обозначать как мутации. Это всего лишь универсальный механизм клеточных перестроек, связанный с энергетическими нарушениями, обусловленными изменениями на уровне митохондрий и мембран.

Сейчас очень много работ посвящено поиску генов (онкогенов), определяющих онкологию. Правильнее утверждать, что все те гены, которые сегодня описаны, как определяющие онкопроцесс, не являются таковыми. Они всего лишь проявление вторичной перестройкой работы генома ядра. Они всего лишь отражение измененных внутрицитоплазматических гомеостатических констант и работы митохондрий.

Известен белок р53, который является супрессором[6] развития раковых опухолей, кодируемый у людей геном ТР53. Этот белок чрезвычайно важен для многоклеточных организмов. Он регулирует клеточный цикл и может служить антионкогеном, т. е. предотвращать развитие рака.

Механизмов антираковых функций р53 несколько. Он распознает повреждения хромосомной ДНК и может инициировать временную остановку деления клеток в так называемых точках регулирования клеточного цикла. Белок р53 также способен активировать гены белков, исправляющих повреждения ДНК (например, при перерождении клетки в раковую). За время паузы белки, восстанавливающие ДНК, получают необходимое для работы время. Если ДНК восстанавливает нормальную функцию, клетки снова начинают делиться, и их ракового перерождения не происходит. Если повреждение ДНК не поддается исправлению, белок р53 способен запустить процесс апоптоза — запрограммированной гибели клетки. Похожим образом белок р53 может реагировать и на другие клеточные стрессы.

Проводились исследования активности опухолевого супрессора р53 при действии различных стрессов. Один из видов клеточного стресса — нарушение работы дыхательной цепи митохондрий.

Что такое дыхательная цепь митохондрий?

В процессе преобразования энергии используются богатые энергией электроны, заключенные в питательных веществах. Перенос электронов идет последовательно через ряд сложных белковых комплексов (с номерами от 1 до 4), плавающих в митохондриальной мембране и образующих «дыхательную цепь». Продвигаясь по этой цепи, электроны последовательно переходят на все более низкие энергетические уровни и в конце концов соединяются с кислородом воздуха, которым мы дышим. При этом энергия, отдаваемая электронами, преобразуется в биологически полезные формы, в частности, в энергию аденозинтрифосфорной кислоты (АТФ).

Оказалось, что когда цепь переноса электронов перекрывали на уровне комплексов 1, 2 или 4, активность опухолевого супрессора р53 оставалась на исходном низком уровне. Однако при нарушении переноса электронов через комплекс 3 дыхательной цепи митохондрий происходила значительная активация белка р53.

Это означает, что сами по себе неполадки в работе дыхательной цепи не так важны для клетки, как остановка потока электронов через комплекс 3.

В последнем случае сигнал о несчастье достаточно быстро передается в клеточное ядро, уровень и активность р53 резко возрастают, в результате чего включается работа генов, ответственных за остановку клеточного цикла. Клетки перестают делиться, и через некоторое время в них включается механизм программируемой клеточной смерти — апоптоз.

Так как неполадки в работе дыхательной цепи происходят в митохондриях, а активированный р53 работает в другой части клетки, в ядре, должен существовать путь передачи сигнала от митохондрии в клеточное ядро. Провели поиск этого сигнального пути. Нельзя сказать, что нашли все его звенья, однако ключевое звено было выявлено. Оказалось, что за передачу сигнала ответственен фермент DHODH, который участвует в биосинтезе пиримидиновых нуклеотидов (мономерных блоков для синтеза новых молекул ДНК и РНК). Этот фермент расположен в итохондриальной мембране вблизи комплекса 3 дыхательной цепи. Остановка потока электронов через комплекс 3 ведет к нарушению работы этого фермента и, как следствие, остановке синтеза пиримидиновых нуклеотидов.

Синтез РНК и ДНК происходит в клеточном ядре, и нарушение каждого из этих процессов может приводить к активации р53. Показано, что недостаток мономерных блоков для образования новых молекул РНК и ДНК в делящейся клетке и является причиной активации р53. Так, добавление пиримидиновых нуклеотидов в среду для роста клеток выключало активацию р53 при ингибировании комплекса 3, и клетки выживали.

Впервые показано, что биосинтез пиримидиновых нуклеотидов является связующим звеном между дыхательной цепью митохондрий и опухолевым супрессором р53.

Преимущества предлагаемой нами аберрантной теории онкологии заключаются в том, что с ее помощью можно построить логичную последовательную модель онкопроцеса, в которую можно вписать и не укладывающиеся в предшествующие модели энергетические и анаболитно-катаболические нарушения на клеточном уровне. В частности, становится намного понятнее, почему гликолизный метаболизм опухоли в восемь раз сильнее, чем гликолиз здоровой работающей мышцы, и в сто раз сильнее, чем в покоящейся ткани.

Весь онкогенный процесс начинается с изменения энергетических процессов.

Методика данного лечения основана на предложенной мною мембранномитохондриальной теории рака. Дело в том, что подавление онкоклеток с помощью фокусированного катаболизма — это решение только части проблемы. С помощью же предлагаемого метода мы можем не только уменьшить объем опухоли, но и полностью избавиться от нее и метастазов.

Но и этого будет недостаточно. Так как первичные механизмы злокачественного перерождения клеток до конца не устранены, остается риск рецидива болезни. Только устраняя базу, на которой может возобновиться процесс, можно полностью избавиться от патологии. Для этого обязательным звеном лечения должно быть восстановление мембранно-митохондриального комплекса.

Как известно, митохондрии являются структурами, которые осуществляют синтез аденозинтрифосфорной кислоты (АТФ) — основной энергетической единицы всего царства живого. Обычно митохондрии представляют собой мелкие (длиной 1/2-3 мкм) внутриклеточные образования, располагающиеся в местах, где необходимо использование энергии для любых жизненных процессов. Длинные и разветвленные митохондрии могут энергетически обеспечивать отдаленные друг от друга участки клетки. Мембраны митохондрий способны проводить энергию.

Повышение общей эффективности и устойчивости ремиссионного процесса можно достичь с помощью применения льняного масла, содержащего омега-3 кислоту.

Данный текст является ознакомительным фрагментом.