Уникальная система самозащиты или причина неизлечимости заболеваний? или Что такое гематоэнцефалический барьер головного мозга?

We use cookies. Read the Privacy and Cookie Policy

Уникальная система самозащиты или причина неизлечимости заболеваний?

или Что такое гематоэнцефалический барьер головного мозга?

Мешать нейронам полноценно функционировать способны не только вирусы или инфекция. Они-то всем тканям, а не одним нейронам наносят непоправимый ущерб. Потому на данный момент известен лишь один тип тканей, развитию которых они, в известном смысле, способствуют. Правда, речь идет о тканях злокачественных, так что от подобной «помощи» лучше все-таки отказаться…

Бактерии, имеющие свойство атаковать клетки крови, проникни они в мозг – что в головной, что в спинной, – могут натворить немало бед. Хорошо, если круг последствий ограничится каким-нибудь хроническим нистагмом (хаотичное, неподконтрольное движение глазных белков) или мышечными судорогами!

Они хотя бы совместимы с жизнью, как и эпилепсия. Да и купировать большинство таких проявлений сейчас возможно благодаря высокому развитию фармацевтической промышленности. Миорелаксанты здесь приходятся очень кстати и обычно демонстрируют себя с наилучшей стороны.

А если разобьет паралич или нарушится легочная моторика?.. Тем более когда за «агрессором» еще и откроют «сезон охоты» агенты иммунной системы – лейкоциты и Т-киллеры? Даже при условии совершенно правильной их работы, без учета возможных (и встречающихся в нашем мире все чаще) аутоиммунных реакций? Если подумать, выходит, что допускать, чтобы они устраивали себе «охотничьи угодья» прямо в мозгу, и впрямь нельзя!

Вот почему клеткам иммунитета, как и инфекциям любого рода, путь в ткани головного и спинного мозга заказан. Кроме того, гематоэнцефалический барьер защищает нервные ткани от токсинов и продуктов распада, содержащихся в крови. Фактически он не «подпускает» к центральной нервной системе ничего лишнего, способного нарушить постоянство ее внутренней среды. И следовательно, расстроить ее налаженную работу.

Одновременно он отражает абсолютное большинство внешних атак на эту среду. А все это в совокупности обеспечивает определенную его независимость от состояния иммунитета и множества других процессов в организме.

Как же такое вообще возможно – чтобы все необходимое поступало к клеткам из крови беспрепятственно, а ничего ненужного не просочилось?

Первый рубеж гематоэнцефалической «обороны» мозга образован особой плотностью стенок питающих его капилляров. Не секрет, что стенки сосудов в масштабах всего тела обладают известной проницаемостью. Ведь невозможно представить себе систему сосудов, где к каждой клетке подводил бы отдельный капилляр, не правда ли? Их число зашкалило бы за десятый миллиард уже при подсчете на одной руке от кисти до локтя! Стало быть, каждое ответвление сосуда должно каким-то образом снабжать питательными веществами крови как минимум несколько сотен окружающих клеток!

На самом деле, каждый капилляр успевает удовлетворить потребности куда большего их числа. И все благодаря тому, что его стенки свободно проницаемы для питательных компонентов и белков – захватчиков на поверхности клеточных мембран. Проницаемость эта не везде одинакова и может варьировать в зависимости от типа тканей. Тем не менее до полной «глухоты» она изменяется только в сосудах, подводящих непосредственно к мозгу.

Клетки сосудистых стенок, проходящих через ткани центральной нервной системы, располагаются по принципу черепицы – один слой частично перекрывает элементы другого. Помимо плотности прилегания, у клеток мозговых капилляров есть еще одна особенность. Они содержат гораздо больше митохондрий, чем другие эндотелиальные (выстилающие стенку сосудов) клетки. Из чего следует, что обменные и энергетические процессы в них проходят гораздо интенсивнее.

Под слоем эндотелиалыных клеток самой сосудистой стенки имеется дополнительная, характерная только для структуры гематоэнцефалического барьера, базальная мембрана. Причем трехслойная. Она выполняет ту же функцию, что и рыбачья сеть, только отлавливает не рыбу, а молекулы определенных размеров… Любопытно также, что митохондрий-то в клетках мозговых сосудов больше, зато вакуолей – меньше.

Вакуоли – это пузырьки цитоплазмы, в которые клетка обычно заключает подлежащие выводу в кровь продукты распада, чтобы после избавиться от них «с комфортом». Причем они почти полностью отсутствуют в клетках, которые ближе к самому просвету сосуда. А в тех, которые прилегают непосредственно к тканям мозга, их число близко к нормальному.

Все это может означать лишь одно: клетки мозговых капилляров четко сориентированы на выведение отходов работы клеток мозга, но функция снабжения у них сужена до минимума.

Однако всех уже перечисленных мер предосторожности природе показалось мало. Этот вывод напрашивается по факту того, что нейроны, в отличие от любых других клеток, не прилегают к поверхности капилляров напрямую. Везде прилегают, а в мозгу – нет.

Стенка каждого капилляра окружена промежуточным слоем еще одних особых клеток – астроцитов. Такое «звездное» название их объясняется наличием густой сети отростков – дендритов, которая придает астроцитам сходство с лучистой звездой. Слой этих клеток покрывает 85–90 % поверхности мозговых капилляров и называется нейроглией.

Нейроглия не относится ни к нервной ткани, ни к эндотелиальной, однако выполняет посредническую функцию между той и другой сторонами. Именно составляющие ее астроциты захватывают необходимые элементы из кровотока. И они же передают их дальше, отросткам целевых клеток мозга. Причем астроциты снабжены собственной сигнальной системой. По ее «команде» проницаемость гематоэнцефалического барьера может повыситься или понизиться. Достигается такой эффект за счет снижения или повышения окислительной способности астроцитов и, как следствие, их электрического заряда. Это означает, что при снижении окислительного потенциала астроцит начинает притягивать из крови больше молекул – за счет разницы зарядов. Когда же он увеличен, барьер становится более плотным.

Известно, что все элементы крови заряжены отрицательно, чтобы избежать их слипания. Клетки в основном тоже. Для притягивания веществ, «проплывающих» мимо вместе с кровотоком, они обычно используют не законы электричества, а парные этим веществам белки – рецепторы на поверхности собственных мембран. Притягивание элементов через внезапную смену заряда с отрицательного на положительный «умеет» использовать, помимо нейроглии, только сам эндотелий сосуда. Такое случается при травме – и случается для того, чтобы притянуть из кровотока тромбоциты к месту повреждения.

Для чего эндотелию нужен столь специфичный механизм, понятно: тромбоциты нельзя активизировать сразу все и повсеместно. Не то сердечно-сосудистую систему в разных местах одновременно перекроют сотни разнокалиберных тромбов. Вот во избежание этого меняют заряд только клетки, расположенные по краям разрыва стенки. А значит, только вокруг них и налипают активаторы свертывания тромбоциты. Нейроглия же аналогичным способом может, в зависимости от ситуации, регулировать степень преодолимости гематоэнцефалического барьера для различных компонентов.

Нетрудно догадаться при таких условиях, что гематоэнцефалический барьер, хоть он и является поистине гениальной естественной структурой, может сам стать источником неприятностей. Что еще, помимо токсинов, продуктов распада и антител, оказывается периодически в крови? Верно, лекарственные препараты. Антибиотики, онкотоксичные соединения для химиотерапии, различного рода диагностические маркеры, элементы заместительного, корригирующего и профилактического назначения… Многоуровневая защита не пропускает и их – она просто не настолько умна, чтобы различать подобные тонкости.

При этом практика показывает, что сквозь решето гематоэнцефалического барьера способны успешно проскользнуть некоторые инфекции. Столбняк, рассеянный склероз, вирусный энцефалит, менингит – вот далеко не полный перечень заболеваний органов центральной нервной системы, вызываемых различными возбудителями. Они лечатся, но по-прежнему очень тяжело, несмотря ни на какое совершенство современных антибиотиков. А «благодарить» за это следует именно защитные системы отделов ЦНС. Технически, гематоэнцефалический барьер можно отчасти обойти – выполнять впрыскивание назначенных препаратов непосредственно в полость черепа. Но у метода существует множество недостатков, делающих его неполноценным, существенно повышающих риск осложнений и снижающих его эффективность.

Во-первых, впрыскивание лекарственного средства в заполненные жидкостями полости, которые отделяют одну оболочку от другой, означает непременную трепанацию черепа. То есть радикальное хирургическое вмешательство, имеющее свой спектр последствий и несущее риск вторичного инфицирования пока не задетых участков мозга.

Во-вторых, сами мозговые оболочки, как уже упоминалось, обладают собственным набором «контраргументов» к любым попыткам проникнуть сквозь них. Таким образом, вскрытие черепной коробки и вливание под них лекарства совсем не гарантирует, что оно хоть сколько-нибудь заметно подействует на инфицированные участки. Оно имеет довольно основательные шансы просто «не добраться» до целевых клеток.

В-третьих, необходим весьма тщательный контроль объема подаваемых жидкостей, ибо там и своей, цереброспинальной, вполне достаточно. К тому же черепная коробка, как говорится, не резиновая…

В-четвертых, частичное проникновение лекарственных средств сквозь мягкую оболочку мозга нельзя даже близко сравнить с полноценной капельницей. Так что вариант с прямым проникновением в полость черепа годится, что называется, только для самых ловких и находчивых молекул. Точь-в-точь как при естественном отборе. Но большего от него ожидать не следует.

Естественно, что такое количество недостатков не дает ученым покоя уже много лет подряд. И с открытием нанотехнологий дело, похоже, сдвинулось с мертвой точки. На данный момент еще нельзя говорить об изобретении кем-либо из нанотехнологов стопроцентно надежных, безопасных и действенных способов «провести» молекулы лекарства сквозь «редуты» барьера. То есть само-то направление работ здесь определить не составляет труда. Однако есть определенные недоработки по части разумения, какие из веществ организма барьер пропустит внутрь безотказно. И конечно, каким образом можно сконструировать вещество с достаточно маленьким для успешного проникновения размером молекул.

Суть нанотехнологий заключается в способах лабораторного, искусственного создания молекул с такой структурой, которая в природе образоваться не может. В самом широком смысле, нанотехнологии позволяют изменять строение естественных молекул – для придания веществам новых свойств, но с сохранением свойств базовых. И данный метод позволяет сочетать не только сочетаемое. В качестве крайнего, граничащего с абсурдом примера: нанотехнологии позволяют присоединять атомы металлов к молекулам жира или белка. Или встраивать их в довольно длинную, как известно, структуру молекул бензола. Разумеется, подобные нелепые модификаты любопытно собирать лишь для «пробы пера», в качестве проверки возможностей подхода. Практическое применение эти гибриды вряд ли найдут. Хотя… В одной из частей культового «Терминатора», помнится, фигурировал робот из будущего, отлитый из жидкого металла. Он даже, кажется, обладал ни с чем не сравнимым талантом к мимикрии… Ну разве что в таких целях!

То есть, пока речь о грядущей войне человекообразных машин не идет, нанотехнологии широко внедряют в медицине. Здесь они могут принести (и приносят) больше пользы. На них построено множество современных контрастных растворов для радиологических исследований. Допустим, контрастом для ПЭТ (позитронно-эмиссионной томографии) служат обычные биологически активные вещества – глюкоза или белки. Только к молекуле этих веществ присоединяется радиоактивный изотоп. Смысл процедуры понятен: на ПЭТ чаще всего ищут злокачественные опухоли и их метастазы. Клетки рака покушать любят, поэтому почти все, что им попадается полезного в крови, они поглощают без разбору. Если то, что они «съели» на сей раз, является источником радиоактивного излучения, томограф непременно зафиксирует наиболее активно излучающие участки тканей. Опухоль будет найдена. А для того, чтобы изотоп мог попасть внутрь злокачественной клетки, и необходима глюкоза. Напомним, это вещество служит универсальным источником энергии для всех клеток и тканей тела. Естественно, они с охотой тут же и распределят введенную в кровь порцию!

Без нанотехнологий существование подобных препаратов было бы невозможно. Приходилось бы просто облучать ампулу с раствором, рискуя удвоить дозу радиации для пациента или получить вещество, уже на глюкозу совсем не похожее. Радиация-то разрушает атомные связи в молекулах! Едва ли просто облученный препарат поглощался бы клетками так же быстро и легко, как сконструированный в нанолаборатории. Вероятность есть, но не столь уж большая – трансжиры вот тоже вроде бы усваиваются… Но не совсем так, как обычные. Однако проблемы онкогенности трансжиров – это всего лишь вопрос отсроченных во времени последствий. А ведь в случае с ПЭТ речь идет о точности диагностики, и такие ошибки в ней недопустимы!

Применительно к проницаемости гематоэнцефалического барьера, ученые испытывают наибольшие затруднения с размером молекул. Разные барьеры организма рассчитаны на пропуск разной же величины элементов. Так вот, гематоэнцефалический барьер из них – самое мелкое «сито». В основном защитная система головного мозга фильтрует вещества по признаку величины их частиц – и в ее тактике есть смысл. В то же время, если бы дело ограничивалось лишь размерами, наука получила бы искомое уже, наверное, году к 2000…

Прежде всего, распределение любых веществ в организме закономерно – то есть подчиняется определенным законам. Жирорастворимые компоненты первым делом, разумеется, будут накапливаться в жировых тканях. Водорастворимые – в крови и цитоплазме клеток. С этой точки зрения есть вещества более и менее универсальные, и их можно расставить по позициям этой шкалы даже, пожалуй, без особо сложных вычислений. Но по окончании этого разбора тотчас пора переходить к следующему – молекулы каких-то веществ распадаются во внутренней среде организма чаще, а какие-то – реже.

Распадаются – это не то же самое, что усваиваются. Речь идет о том, что определенная часть молекул абсолютно любого вещества утрачивает свою структуру сразу после попадания в организм. То есть до начала процесса усвоения. Причин досрочного разрушения молекул на ионы много. Допустим, кровь обладает собственным электрическим зарядом. К тому же это – среда химически активная. Да и сама молекула может быть просто неудачно «склеена». Такое явление наблюдается повсеместно, а не только в организме. Выше уже был описан случай с грозой. Так вот, кто может сказать точно, почему часть валентных связей в молекуле кислорода рвется под действием статических зарядов и образует свободные ионы? Ведь большинство молекул кислорода переносит возмущение полей атмосферы абсолютно спокойно и захватывает еще потом высвобожденные ионы, образуя озон!

Подобные элементы преждевременного распада не пропускает ни один из барьеров организма. Поэтому устойчивость полученной лабораторным путем конструкции тоже нужно непременно учитывать. И потом, это мы перечислили только свойства, которыми может обладать или не обладать сам препарат. А ведь существуют еще индивидуальные особенности строения организма – и они способны доставить хлопот ничуть не меньше!

В тканях головного мозга удельный вес жира достаточно высок – особенно по сравнению с мышцами и костями скелета. Впрочем, не секрет, что и костный мозг содержит немало липидов. Жир вообще требуется организму для строительства многих эластичных и проницаемых оболочек – мембран клеток, кожных покровов, волос, ногтей… Так что представление о липидах у нашего организма далеко не исчерпывается понятием одного целлюлита. Однако бывает так, что общее количество жировых тканей в чьем-то теле сильно уменьшено. Не обязательно в этом виновата неоправданная диета – нередко такое случается из-за нарушений жирового обмена. Скажем, подобное способен спровоцировать сахарный диабет. Или существует заболевание, которое сопровождается демиелинизацией аксонов белого вещества – в то время как миелиновая оболочка аксонов образована с участием жироподобного холестерина. Изменится ли эффективность воздействия на такой мозг препарата, рассчитанного на накопление в липидном слое? Разумеется!

Иммунитет человека организован еще сложнее и тоньше, чем гематоэнцефалический барьер. Если последний способен менять проницаемость стенок, то первый умеет нечто большее – намечать сам себе цели для нападения и разбивать «противника» наголову. Причем иммунитет расставляет приоритеты (и делит все элементы организма на «свои» и «чужие») на основе сугубо индивидуального, не всегда просчитываемого опыта. Как уже было сказано, этот механизм не имеет «власти» в полости черепа именно из-за излишней бескомпромиссности его методов борьбы. Самое же главное для нас здесь то, что есть у иммунитета одно малоприятное свойство: большинство модифицированных веществ, сфера применения которых все увеличивается, провоцируют-таки его реакцию. Только реакцию особую – аутоиммунную. Ее «особость» заключается в том, что иммунитет нападает не на само чужеродное вещество, а на клетки тела – причем не всегда даже те, на которые оно воздействует.

И двойная проблема здесь заключается в том, что иммунная система не относит нейроны ни головного, ни спинного мозга к числу «своих». Они находятся вне зоны ее досягаемости – так каким же образом она могла бы «познакомиться» с ними заранее? Вот именно, никаким. Значит, они для нее – такие же «пришельцы», как и вирусы. А из этого следует, что вещества, специально разработанные для целенаправленного воздействия на клетки мозга, имеют все шансы до барьера просто не «доплыть». Для этого им будет достаточно оказаться уж слишком не схожими ни с чем, знакомым иммунитету пациента по прежнему опыту. По крайней мере, при том способе ввода, о котором сейчас речь, – при введении в кровь, а не прямо в полость черепа.

Впрочем, целесообразность разработки таких препаратов ставят под сомнение сами ученые. Ведь множество веществ организма проникает сквозь гематоэнцефалический барьер ежедневно, беспрепятственно и помногу. Логично было бы попытаться сперва сделать «посыльными» для действующего вещества именно их. Собственно, по этому пути и пошел один из первых исследователей, которому удалось сконструировать молекулу, способную успешно пройти гематоэнцефалический барьер.

Основатель американской биотехнологической компании ArmaGen Technologies У. Пардридж занимается изучением гематоэнцефалического барьера около 40 лет. Он обнаружил и доказал, что инсулиновые рецепторы в капиллярах, обслуживающих головной мозг, выполняют также транспортную функцию. Как уже было сказано, мозг человека мало зависит от уровня инсулина и может, в принципе, обходиться вовсе без него. Однако в нормальном режиме работы он все равно контролирует его уровень в крови, для чего ему и требуются эти рецепторы. Инсулин, который вырабатывается поджелудочной железой (островками особых клеток в ее тканях), служит катализатором усвоения глюкозы клетками. Степень важности этого гормона – незаменимый. Потому контроль над его производством непременно входит в число задач головного мозга. А вот тот факт, что рецепторы также захватывают его из кровотока и отправляют в ткани нашего «мыслительного центра», долгое время оставался неизвестным. Просто никто не предполагал, что мозг может и использовать инсулин, хотя обычно ему достаточно усилий одной ретикулярной формации.

На основе этих наблюдений профессор Пардридж создал синтетическим путем молекулярную структуру, способную проникать в ткани мозга. Вернее, сначала он разработал методику прохождения барьера моноклональными (атакующими только один вид молекул) антителами. Эти элементы принадлежат к числу иммунных образований, а потому, естественно, гематоэнцефалический барьер сами преодолеть не могут. А д-ру Пардриджу удалось связать антитело с молекулой инсулина так, чтобы она не препятствовала «узнаванию» этой молекулы рецептором на стенке сосуда. Отчет[2] об этой работе он предоставил в 1995 году. И тотчас принялся за создание молекулы, в которой место антигена заняло бы терапевтическое вещество. В качестве такового был выбран белок из группы лигандов (агентов молекулы, которые присоединяются к рецепторам при захвате), которая состоит из четырех факторов нейронного роста.

Повышенное внимание к элементам этой группы проявляется давно – ведь они способны замедлять разрушение нейронов под влиянием любого рода воздействий. И более того, запускать процесс активного роста новых связей на месте погибших клеток. При болезни Паркинсона, болезни Альцгеймера и Гентингтона свойство как нельзя более полезное! Вот только доставить его в мозг эффективным методом пока еще никому не удалось. Синтетический же препарат У. Пардриджа надежно и легко доставляет к цели около 2 % от общего количества введенного белка. Причем безо всякого хирургического вмешательства. Приблизительно таково же количество любого другого медицинского препарата, способного преодолеть гематоэнцефалический барьер без посторонней помощи. Обычно это препараты с компактной структурой молекул, наподобие антидепрессантов.

Первые молекулы модифицированного белка были действительно великоваты для прохождения барьера, но группе Пардриджа удалось в итоге «упаковать» их плотнее. Свою разработку компания ArmaGen Technologies назвала AGT-190.

Следует оговорить отдельно, что на данный момент испытания препарата не закончены. Разрешение на их проведение FDA (Food and Drug Administration, в США – Управление по контролю качества продуктов питания и лекарственных средств) выдало лишь в 2010 году. При этом с точки зрения чистой теории препятствия со стороны уровня безопасности этого белка весьма вероятны. Дело в том, что метод У. Пардриджа приводит к равномерному распределению вещества по всем участкам тканей мозга. А вещество это провоцирует интенсивный рост нервных тканей – в том числе там, где в нем нет никакой необходимости…

Закономерно, что данное замечание было впервые сделано непосредственными конкурентами ArmaGen Technologies, да еще и с весьма созвучным названием Amgen. Эта компания занимается усовершенствованием катетеров и прочих составляющих технологии традиционного, транскраниального (в полость черепа) ввода того же фактора роста. Но это еще не означает, что их предупреждение лишено медицинского смысла. В конце концов, профессор У. Пардридж тоже не преминул напомнить оппонентам в ответ обо всех наиболее и наименее существенных недостатках трепанационной методики, развиваемой компанией Amgen. В любом случае, если испытания белка AGT-190 пройдут успешно, едва ли будет несправедливо констатировать, что будущее медицины заключается именно в работах Пардриджа и его команды. Катетеры – это явно не метод при лечении инфекций мозга, и чем скорее они отживут свой век (применительно к таким операциям, разумеется), тем будет лучше для всех…

Данный текст является ознакомительным фрагментом.