8.4. Коблация

We use cookies. Read the Privacy and Cookie Policy

8.4. Коблация

Метод коблации основан на использовании свойств электропроводящей жидкости (например, изотонического солевого раствора) в пространстве между электродом и тканью.

Механизм действия

При создании высокого напряжения между электродом и тканью электропроводящая жидкость преобразуется в ионизированный слой пара – плазму. В результате напряжения градиента в слое плазмы, заряженные частицы ускоряются в направлении ткани. Эти частицы приобретают энергию, достаточную для разрушения молекулярных связей в структуре ткани. Указанное молекулярное расщепление приводит к объемному удалению ткани. Из-за ограниченного перемещения ускоренных частиц в плазме, молекулярное расщепление происходит только в поверхностном слое. В результате применение метода коблации сопровождается разрушением ткани только в заданном объеме при минимальном некрозе соседних структур.

Энергия, развиваемая частицами плазмы, зависит от сочетания ряда факторов:

– количества электродов;

– их размеров и геометрических характеристик;

– площади рабочей поверхности электродов;

– электрической проводимости жидкости;

– напряженности жидкости.

Данный метод приводит к чрезвычайно малым глубинным коллатеральным повреждениям ткани. Это предопределяет возможность его применения для прецизионных действий (например, скелетирования нерва без разрушений даже отдельных нервных волокон).

Преимущества метода коблации:

– Используется относительно низкотемпературная плазма.

– Не происходит перегревание соседних тканей.

– В отличие от импульсного лазерного режима с помощью метода коблации возможно непрерывное воздействие на ткани.

– Эффективность метода коблации значительно выше, чем при использовании эксимерных лазеров.

Данный текст является ознакомительным фрагментом.